diff --git a/veomni/models/transformers/gpt_oss/__init__.py b/veomni/models/transformers/gpt_oss/__init__.py new file mode 100644 index 00000000..0364f280 --- /dev/null +++ b/veomni/models/transformers/gpt_oss/__init__.py @@ -0,0 +1,20 @@ +import transformers +from transformers import ( + AutoConfig, + AutoModel, + AutoModelForCausalLM, +) + +from .configuration_gpt_oss import GptOssConfig +from .modeling_gpt_oss import ( + GptOssForCausalLM, + GptOssModel, +) + + +if transformers.__version__ < "4.55.0": + AutoConfig.register("gpt_oss", GptOssConfig) + AutoModel.register(GptOssConfig, GptOssModel) + AutoModelForCausalLM.register(GptOssConfig, GptOssForCausalLM) + +__all__ = ["GptOssConfig", "GptOssModel", "GptOssForCausalLM"] diff --git a/veomni/models/transformers/gpt_oss/configuration_gpt_oss.py b/veomni/models/transformers/gpt_oss/configuration_gpt_oss.py new file mode 100644 index 00000000..0b7ec76d --- /dev/null +++ b/veomni/models/transformers/gpt_oss/configuration_gpt_oss.py @@ -0,0 +1,119 @@ +# Copyright 2025 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""openai model configuration""" + +from transformers.configuration_utils import PretrainedConfig, layer_type_validation +from transformers.modeling_rope_utils import rope_config_validation + + +class GptOssConfig(PretrainedConfig): + r""" + This will yield a configuration to that of the BERT + [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) architecture. + + """ + + model_type = "gpt_oss" + base_model_pp_plan = { + "embed_tokens": (["input_ids"], ["inputs_embeds"]), + "layers": (["hidden_states", "attention_mask"], ["hidden_states"]), + "norm": (["hidden_states"], ["hidden_states"]), + } + base_model_tp_plan = { + "layers.*.self_attn.q_proj": "colwise", + "layers.*.self_attn.k_proj": "colwise", + "layers.*.self_attn.v_proj": "colwise", + "layers.*.self_attn.o_proj": "rowwise", + "layers.*.self_attn.sinks": "local_rowwise", + "layers.*.mlp.experts": "gather", + "layers.*.mlp.router": "ep_router", + "layers.*.mlp.experts.gate_up_proj": "grouped_gemm", + "layers.*.mlp.experts.gate_up_proj_bias": "grouped_gemm", + "layers.*.mlp.experts.down_proj": "grouped_gemm", + "layers.*.mlp.experts.down_proj_bias": "grouped_gemm", + } + + def __init__( + self, + num_hidden_layers: int = 36, + num_local_experts: int = 128, + vocab_size: int = 201088, + hidden_size: int = 2880, + intermediate_size: int = 2880, + head_dim: int = 64, + num_attention_heads: int = 64, + num_key_value_heads: int = 8, + sliding_window: int = 128, + rope_theta: float = 150000.0, + tie_word_embeddings=False, + hidden_act: str = "silu", + initializer_range: float = 0.02, + max_position_embeddings=131072, + rms_norm_eps: float = 1e-5, + rope_scaling={"rope_type": "yarn", "factor": 32.0, "beta_fast": 32.0, "beta_slow": 1.0, "truncate": False}, + attention_dropout: float = 0.0, + num_experts_per_tok=4, + router_aux_loss_coef: float = 0.9, + output_router_logits=False, + use_cache=True, + layer_types=None, + _moe_implementation="eager", + **kwargs, + ): + self.vocab_size = vocab_size + self.hidden_size = hidden_size + self.intermediate_size = intermediate_size + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + self.num_local_experts = num_local_experts + self.sliding_window = sliding_window + self.num_experts_per_tok = num_experts_per_tok + # for backward compatibility + if num_key_value_heads is None: + num_key_value_heads = num_attention_heads + + self.num_key_value_heads = num_key_value_heads + self.hidden_act = hidden_act + self.initializer_range = initializer_range + self.rms_norm_eps = rms_norm_eps + self.rope_theta = rope_theta + self.rope_scaling = rope_scaling + self.attention_dropout = attention_dropout + self.head_dim = head_dim if head_dim is not None else self.hidden_size // self.num_attention_heads + self.layer_types = layer_types + if self.layer_types is None: + self.layer_types = [ + "sliding_attention" if bool((i + 1) % 2) else "full_attention" for i in range(self.num_hidden_layers) + ] + layer_type_validation(self.layer_types) + + # Validate the correctness of rotary position embeddings parameters + # BC: if there is a 'type' field, copy it it to 'rope_type'. + if self.rope_scaling is not None and "type" in self.rope_scaling: + self.rope_scaling["rope_type"] = self.rope_scaling["type"] + rope_config_validation(self) + + self.attention_bias = True + self.max_position_embeddings = max_position_embeddings + self.router_aux_loss_coef = router_aux_loss_coef + self.output_router_logits = output_router_logits + self.use_cache = use_cache + self._moe_implementation = _moe_implementation + super().__init__( + tie_word_embeddings=tie_word_embeddings, + **kwargs, + ) + + +__all__ = ["GptOssConfig"] diff --git a/veomni/models/transformers/gpt_oss/modeling_gpt_oss.py b/veomni/models/transformers/gpt_oss/modeling_gpt_oss.py new file mode 100644 index 00000000..30117fe7 --- /dev/null +++ b/veomni/models/transformers/gpt_oss/modeling_gpt_oss.py @@ -0,0 +1,721 @@ +# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 +# This file was automatically generated from src/transformers/models/gpt_oss/modular_gpt_oss.py. +# Do NOT edit this file manually as any edits will be overwritten by the generation of +# the file from the modular. If any change should be done, please apply the change to the +# modular_gpt_oss.py file directly. One of our CI enforces this. +# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 +# coding=utf-8 +# Copyright 2025 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import Callable, Optional, Union + +import torch +from torch import nn +from torch.nn import functional as F +from transformers.cache_utils import Cache, DynamicCache +from transformers.generation import GenerationMixin +from transformers.masking_utils import create_causal_mask, create_sliding_window_causal_mask +from transformers.modeling_outputs import MoeCausalLMOutputWithPast, MoeModelOutputWithPast +from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update +from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel +from transformers.processing_utils import Unpack +from transformers.utils import TransformersKwargs, auto_docstring, can_return_tuple +from transformers.utils.generic import OutputRecorder, check_model_inputs + +from ....ops.gpt_fused_moe import fused_moe_forward +from ...module_utils import GradientCheckpointingLayer +from .configuration_gpt_oss import GptOssConfig + + +class GptOssRMSNorm(nn.Module): + def __init__(self, hidden_size, eps=1e-6): + """ + GptOssRMSNorm is equivalent to T5LayerNorm + """ + super().__init__() + self.weight = nn.Parameter(torch.ones(hidden_size)) + self.variance_epsilon = eps + + def forward(self, hidden_states): + input_dtype = hidden_states.dtype + hidden_states = hidden_states.to(torch.float32) + variance = hidden_states.pow(2).mean(-1, keepdim=True) + hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) + return (self.weight * hidden_states).to(input_dtype) # main diff with Llama + + def extra_repr(self): + return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" + + +class GptOssExperts(nn.Module): + def __init__(self, config: GptOssConfig): + super().__init__() + self.intermediate_size = config.intermediate_size + self.num_experts = config.num_local_experts + self.top_k = config.num_experts_per_tok + self.hidden_size = config.hidden_size + self.moe_implementation = config._moe_implementation + self.expert_dim = self.intermediate_size + self.gate_up_proj = nn.Parameter(torch.empty(self.num_experts, self.hidden_size, 2 * self.expert_dim)) + self.gate_up_proj_bias = nn.Parameter(torch.empty(self.num_experts, 2 * self.expert_dim)) + self.down_proj = nn.Parameter(torch.empty((self.num_experts, self.expert_dim, self.hidden_size))) + self.down_proj_bias = nn.Parameter(torch.empty(self.num_experts, self.hidden_size)) + self.alpha = 1.702 + self.limit = 7.0 + + def forward(self, hidden_states: torch.Tensor, router_indices=None, routing_weights=None) -> torch.Tensor: + """ + When training is is more efficient to just loop over the experts and compute the output for each expert + as otherwise the memory would explode. + + For inference we can sacrifice some memory and compute the output for all experts at once. By repeating the inputs. + + Args: + hidden_states (torch.Tensor): (batch_size, seq_len, hidden_size) + selected_experts (torch.Tensor): (batch_size * token_num, top_k) + routing_weights (torch.Tensor): (batch_size * token_num, top_k) + Returns: + torch.Tensor + """ + batch_size = hidden_states.shape[0] + hidden_states = hidden_states.reshape(-1, self.hidden_size) # (num_tokens, hidden_size) + num_experts = self.num_experts + if self.training: + if self.moe_implementation == "eager": + routing_weights = hidden_states.new_zeros((hidden_states.shape[0], num_experts)).scatter_(1, router_indices, routing_weights) + next_states = torch.zeros_like(hidden_states, dtype=hidden_states.dtype, device=hidden_states.device) + with torch.no_grad(): + expert_mask = torch.nn.functional.one_hot(router_indices, num_classes=num_experts) + expert_mask = expert_mask.permute(2, 1, 0) + # we sum on the top_k and on the sequence lenght to get which experts + # are hit this time around + expert_hitted = torch.greater(expert_mask.sum(dim=(-1, -2)), 0).nonzero() + for expert_idx in expert_hitted[:]: + with torch.no_grad(): + _, token_idx = torch.where(expert_mask[expert_idx[0]]) + current_state = hidden_states[token_idx] + gate_up = current_state @ self.gate_up_proj[expert_idx] + self.gate_up_proj_bias[expert_idx] + gate, up = gate_up[..., ::2], gate_up[..., 1::2] + gate = gate.clamp(min=None, max=self.limit) + up = up.clamp(min=-self.limit, max=self.limit) + glu = gate * torch.sigmoid(gate * self.alpha) + gated_output = (up + 1) * glu + out = gated_output @ self.down_proj[expert_idx] + self.down_proj_bias[expert_idx] + weighted_output = out[0] * routing_weights[token_idx, expert_idx, None] + next_states.index_add_(0, token_idx, weighted_output.to(hidden_states.dtype)) + next_states = next_states.view(batch_size, -1, self.hidden_size) + + elif self.moe_implementation == "fused": + next_states = fused_moe_forward( + module=self, + num_experts=self.num_experts, + routing_weights=routing_weights, + selected_experts=router_indices, + hidden_states=hidden_states, + gate_up_proj=self.gate_up_proj, + gate_up_proj_bias=self.gate_up_proj_bias, + down_proj=self.down_proj, + down_proj_bias=self.down_proj_bias, + limit=self.limit, + alpha=self.alpha, + ).view(batch_size, -1, self.hidden_size) + else: + raise NotImplementedError + else: + hidden_states = hidden_states.repeat(num_experts, 1) + hidden_states = hidden_states.view(num_experts, -1, self.hidden_size) + gate_up = torch.bmm(hidden_states, self.gate_up_proj) + self.gate_up_proj_bias[..., None, :] + gate, up = gate_up[..., ::2], gate_up[..., 1::2] + gate = gate.clamp(min=None, max=self.limit) + up = up.clamp(min=-self.limit, max=self.limit) + glu = gate * torch.sigmoid(gate * self.alpha) + next_states = torch.bmm(((up + 1) * glu), self.down_proj) + next_states = next_states + self.down_proj_bias[..., None, :] + next_states = next_states.view(num_experts, batch_size, -1, self.hidden_size) + next_states = next_states * routing_weights.transpose(0, 1).view(num_experts, batch_size, -1)[..., None] + next_states = next_states.sum(dim=0) + return next_states + + +class GptOssTopKRouter(nn.Module): + def __init__(self, config): + super().__init__() + self.top_k = config.num_experts_per_tok + self.num_experts = config.num_local_experts + self.hidden_dim = config.hidden_size + self.weight = nn.Parameter(torch.empty(self.num_experts, self.hidden_dim)) + self.bias = nn.Parameter(torch.empty(self.num_experts)) + + def forward(self, hidden_states): + hidden_states = hidden_states.reshape(-1, self.hidden_dim) + router_logits = F.linear(hidden_states, self.weight, self.bias) # (seq_len, num_experts) + router_top_value, router_indices = torch.topk(router_logits, self.top_k, dim=-1) # (seq_len, top_k) + router_top_value = torch.nn.functional.softmax(router_top_value, dim=1, dtype=router_top_value.dtype) + # router_scores = torch.zeros_like(router_logits).scatter_(1, router_indices, router_top_value) + return router_top_value, router_indices + + +class GptOssMLP(nn.Module): + def __init__(self, config): + super().__init__() + self.router = GptOssTopKRouter(config) + self.experts = GptOssExperts(config) + + def forward(self, hidden_states): + router_top_value, router_indices = self.router(hidden_states) # (num_experts, seq_len) + routed_out = self.experts(hidden_states, router_indices=router_indices, routing_weights=router_top_value) + return routed_out, router_top_value + + +class GptOssRotaryEmbedding(nn.Module): + def __init__(self, config: GptOssConfig, device=None): + super().__init__() + # BC: "rope_type" was originally "type" + if hasattr(config, "rope_scaling") and isinstance(config.rope_scaling, dict): + self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) + else: + self.rope_type = "default" + self.max_seq_len_cached = config.max_position_embeddings + self.original_max_seq_len = config.max_position_embeddings + + self.config = config + self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] + + inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) + self.register_buffer("inv_freq", inv_freq, persistent=False) + self.original_inv_freq = self.inv_freq + + @torch.no_grad() + @dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope) + def forward(self, x, position_ids): + inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device) + position_ids_expanded = position_ids[:, None, :].float() + + device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu" + with torch.autocast(device_type=device_type, enabled=False): # Force float32 + freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) + emb = freqs + cos = emb.cos() * self.attention_scaling + sin = emb.sin() * self.attention_scaling + + return cos.to(x.dtype), sin.to(x.dtype) + + +def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: + """ + This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, + num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) + """ + batch, num_key_value_heads, slen, head_dim = hidden_states.shape + if n_rep == 1: + return hidden_states + hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) + return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) + + +def _apply_rotary_emb( + x: torch.Tensor, + cos: torch.Tensor, + sin: torch.Tensor, +) -> torch.Tensor: + first_half, second_half = torch.chunk(x, 2, dim=-1) + first_ = first_half * cos - second_half * sin + second_ = second_half * cos + first_half * sin + return torch.cat((first_, second_), dim=-1) + + +def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): + cos = cos.unsqueeze(unsqueeze_dim) + sin = sin.unsqueeze(unsqueeze_dim) + q_embed = _apply_rotary_emb(q, cos, sin) + k_embed = _apply_rotary_emb(k, cos, sin) + return q_embed, k_embed + + +def eager_attention_forward( + module: nn.Module, + query: torch.Tensor, + key: torch.Tensor, + value: torch.Tensor, + attention_mask: Optional[torch.Tensor], + scaling: float, + dropout: float = 0.0, + **kwargs, +): + key_states = repeat_kv(key, module.num_key_value_groups) + value_states = repeat_kv(value, module.num_key_value_groups) + attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling + if attention_mask is not None: + causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] + attn_weights = attn_weights + causal_mask + + sinks = module.sinks.reshape(1, -1, 1, 1).expand(query.shape[0], -1, query.shape[-2], -1) + combined_logits = torch.cat([attn_weights, sinks], dim=-1) + + # This was not in the original implementation and slightly affect results; it prevents overflow in BF16/FP16 + # when training with bsz>1 we clamp max values. + + combined_logits = combined_logits - combined_logits.max(dim=-1, keepdim=True).values + probs = F.softmax(combined_logits, dim=-1, dtype=combined_logits.dtype) + scores = probs[..., :-1] # we drop the sink here + attn_weights = nn.functional.dropout(scores, p=dropout, training=module.training) + attn_output = torch.matmul(attn_weights, value_states) + attn_output = attn_output.transpose(1, 2).contiguous() + return attn_output, attn_weights + + +class GptOssAttention(nn.Module): + """Multi-headed attention from 'Attention Is All You Need' paper""" + + def __init__(self, config: GptOssConfig, layer_idx: int): + super().__init__() + self.config = config + self.layer_idx = layer_idx + self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads) + self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads + self.scaling = self.head_dim**-0.5 + self.attention_dropout = config.attention_dropout + self.is_causal = True + self.q_proj = nn.Linear( + config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias + ) + self.k_proj = nn.Linear( + config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias + ) + self.v_proj = nn.Linear( + config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias + ) + self.o_proj = nn.Linear( + config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias + ) + self.sliding_window = config.sliding_window if config.layer_types[layer_idx] == "sliding_attention" else None + self.sinks = nn.Parameter(torch.empty(config.num_attention_heads)) + + def forward( + self, + hidden_states: torch.Tensor, + position_embeddings: tuple[torch.Tensor, torch.Tensor], + attention_mask: Optional[torch.Tensor], + past_key_value: Optional[Cache] = None, + cache_position: Optional[torch.LongTensor] = None, + **kwargs: Unpack[TransformersKwargs], + ) -> tuple[torch.Tensor, torch.Tensor]: + input_shape = hidden_states.shape[:-1] + hidden_shape = (*input_shape, -1, self.head_dim) + + query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2) + key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2) + value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) + + cos, sin = position_embeddings + query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) + + if past_key_value is not None: + cache_kwargs = {"cache_position": cache_position} + key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) + + attention_interface: Callable = eager_attention_forward + if self.config._attn_implementation != "eager": + attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] + + attn_output, attn_weights = attention_interface( + self, + query_states, + key_states, + value_states, + attention_mask, + dropout=0.0 if not self.training else self.attention_dropout, + scaling=self.scaling, + sliding_window=self.sliding_window, + s_aux=self.sinks, # diff with Llama + **kwargs, + ) + + attn_output = attn_output.reshape(*input_shape, -1).contiguous() + attn_output = self.o_proj(attn_output) + return attn_output, attn_weights + + +class GptOssDecoderLayer(GradientCheckpointingLayer): + def __init__(self, config: GptOssConfig, layer_idx: int): + super().__init__() + self.hidden_size = config.hidden_size + self.self_attn = GptOssAttention(config=config, layer_idx=layer_idx) + self.mlp = GptOssMLP(config) + self.input_layernorm = GptOssRMSNorm(config.hidden_size, eps=config.rms_norm_eps) + self.post_attention_layernorm = GptOssRMSNorm(config.hidden_size, eps=config.rms_norm_eps) + self.attention_type = config.layer_types[layer_idx] + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_value: Optional[Cache] = None, + use_cache: Optional[bool] = False, + cache_position: Optional[torch.LongTensor] = None, + position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC + **kwargs: Unpack[TransformersKwargs], + ) -> tuple[torch.Tensor]: + residual = hidden_states + hidden_states = self.input_layernorm(hidden_states) + # Self Attention + hidden_states, _ = self.self_attn( + hidden_states=hidden_states, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_value=past_key_value, + use_cache=use_cache, + cache_position=cache_position, + position_embeddings=position_embeddings, + **kwargs, + ) + hidden_states = residual + hidden_states + + # Fully Connected + residual = hidden_states + hidden_states = self.post_attention_layernorm(hidden_states) + hidden_states, _ = self.mlp(hidden_states) # diff with llama: router scores + hidden_states = residual + hidden_states + return hidden_states + + +@auto_docstring +class GptOssPreTrainedModel(PreTrainedModel): + config: GptOssConfig + base_model_prefix = "model" + supports_gradient_checkpointing = True + _no_split_modules = ["GptOssDecoderLayer"] + _skip_keys_device_placement = ["past_key_values"] + _supports_flash_attn = True + _supports_sdpa = False + _supports_flex_attn = True + + _can_compile_fullgraph = True + _supports_attention_backend = True + _can_record_outputs = { + "router_logits": OutputRecorder(GptOssTopKRouter, index=0), + "hidden_states": GptOssDecoderLayer, + "attentions": GptOssAttention, + } + _keep_in_fp32_modules = ["post_attention_layernorm", "input_layernorm", "norm"] + _supports_flash_attention = False + _supports_flex_attention = False + + def _init_weights(self, module): + std = self.config.initializer_range + if isinstance(module, nn.Linear): + module.weight.data.normal_(mean=0.0, std=std) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Parameter): + module.data.normal_(mean=0.0, std=std) + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=std) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + elif isinstance(module, GptOssRMSNorm): + module.weight.data.fill_(1.0) + elif isinstance(module, GptOssExperts): + module.gate_up_proj.data.normal_(mean=0.0, std=std) + module.gate_up_proj_bias.data.zero_() + module.down_proj.data.normal_(mean=0.0, std=std) + module.down_proj_bias.data.zero_() + elif isinstance(module, GptOssAttention): + module.sinks.data.normal_(mean=0.0, std=std) + elif isinstance(module, GptOssTopKRouter): + module.weight.data.normal_(mean=0.0, std=std) + module.bias.data.normal_(mean=0.0, std=std) + + +@auto_docstring +class GptOssModel(GptOssPreTrainedModel): + _no_split_modules = ["GptOssDecoderLayer"] + + def __init__(self, config: GptOssConfig): + super().__init__(config) + self.padding_idx = config.pad_token_id + self.vocab_size = config.vocab_size + + self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) + self.layers = nn.ModuleList( + [GptOssDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] + ) + self.norm = GptOssRMSNorm(config.hidden_size, eps=config.rms_norm_eps) + self.rotary_emb = GptOssRotaryEmbedding(config=config) + self.gradient_checkpointing = False + + # Initialize weights and apply final processing + self.post_init() + + @check_model_inputs + @auto_docstring + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[list[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = None, + cache_position: Optional[torch.LongTensor] = None, + **kwargs: Unpack[TransformersKwargs], + ) -> MoeModelOutputWithPast: + if (input_ids is None) ^ (inputs_embeds is not None): + raise ValueError("You must specify exactly one of input_ids or inputs_embeds") + + if use_cache and past_key_values is None: + past_key_values = DynamicCache() + + if inputs_embeds is None: + inputs_embeds = self.embed_tokens(input_ids) + + if cache_position is None: + past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 + cache_position = torch.arange( + past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device + ) + if position_ids is None: + position_ids = cache_position.unsqueeze(0) + + # It may already have been prepared by e.g. `generate` + if not isinstance(causal_mask_mapping := attention_mask, dict): + mask_kwargs = { + "config": self.config, + "input_embeds": inputs_embeds, + "attention_mask": attention_mask, + "cache_position": cache_position, + "past_key_values": past_key_values, + } + causal_mask_mapping = { + "full_attention": create_causal_mask(**mask_kwargs), + "sliding_attention": create_sliding_window_causal_mask(**mask_kwargs), + } + + hidden_states = inputs_embeds + position_embeddings = self.rotary_emb(hidden_states, position_ids) + + for decoder_layer in self.layers: + hidden_states = decoder_layer( + hidden_states, + attention_mask=causal_mask_mapping[decoder_layer.attention_type], + position_ids=position_ids, + past_key_value=past_key_values, + use_cache=use_cache, + cache_position=cache_position, + position_embeddings=position_embeddings, + **kwargs, + ) + hidden_states = self.norm(hidden_states) + return MoeModelOutputWithPast( + last_hidden_state=hidden_states, + past_key_values=past_key_values, + ) + + +def load_balancing_loss_func( + gate_logits: Union[torch.Tensor, tuple[torch.Tensor], None], + num_experts: Optional[int] = None, + top_k=2, + attention_mask: Optional[torch.Tensor] = None, +) -> Union[torch.Tensor, int]: + r""" + Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch. + + See Switch Transformer (https://huggingface.co/papers/2101.03961) for more details. This function implements the loss + function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between + experts is too unbalanced. + + Args: + gate_logits: + Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of + shape [batch_size X sequence_length, num_experts]. + num_experts: + Number of experts + top_k: + The number of experts to route per-token, can be also interpreted as the `top-k` routing + parameter. + attention_mask (`torch.Tensor`, *optional*): + The attention_mask used in forward function + shape [batch_size X sequence_length] if not None. + + Returns: + The auxiliary loss. + """ + if gate_logits is None or not isinstance(gate_logits, tuple): + return 0 + + if isinstance(gate_logits, tuple): + compute_device = gate_logits[0].device + concatenated_gate_logits = torch.cat([layer_gate.to(compute_device) for layer_gate in gate_logits], dim=0) + + routing_weights = torch.nn.functional.softmax(concatenated_gate_logits, dim=-1) + + _, selected_experts = torch.topk(routing_weights, top_k, dim=-1) + + expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts) + + if attention_mask is None: + # Compute the percentage of tokens routed to each experts + tokens_per_expert = torch.mean(expert_mask.float(), dim=0) + + # Compute the average probability of routing to these experts + router_prob_per_expert = torch.mean(routing_weights, dim=0) + else: + batch_size, sequence_length = attention_mask.shape + num_hidden_layers = concatenated_gate_logits.shape[0] // (batch_size * sequence_length) + + # Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask + expert_attention_mask = ( + attention_mask[None, :, :, None, None] + .expand((num_hidden_layers, batch_size, sequence_length, top_k, num_experts)) + .reshape(-1, top_k, num_experts) + .to(compute_device) + ) + + # Compute the percentage of tokens routed to each experts + tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum( + expert_attention_mask, dim=0 + ) + + # Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert + router_per_expert_attention_mask = ( + attention_mask[None, :, :, None] + .expand((num_hidden_layers, batch_size, sequence_length, num_experts)) + .reshape(-1, num_experts) + .to(compute_device) + ) + + # Compute the average probability of routing to these experts + router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum( + router_per_expert_attention_mask, dim=0 + ) + + overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0)) + return overall_loss * num_experts + + +@auto_docstring +class GptOssForCausalLM(GptOssPreTrainedModel, GenerationMixin): + _tied_weights_keys = ["lm_head.weight"] + _tp_plan = {"lm_head": "colwise_rep"} + _pp_plan = {"lm_head": (["hidden_states"], ["logits"])} + + def __init__(self, config): + super().__init__(config) + self.model = GptOssModel(config) + self.vocab_size = config.vocab_size + self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) + self.router_aux_loss_coef = config.router_aux_loss_coef + self.num_experts = config.num_local_experts + self.num_experts_per_tok = config.num_experts_per_tok + + # Initialize weights and apply final processing + self.post_init() + + def set_decoder(self, decoder): + self.model = decoder + + def get_decoder(self): + return self.model + + @can_return_tuple + @auto_docstring + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[Cache] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_router_logits: Optional[bool] = None, + cache_position: Optional[torch.LongTensor] = None, + logits_to_keep: Union[int, torch.Tensor] = 0, + **kwargs: Unpack[TransformersKwargs], + ) -> MoeCausalLMOutputWithPast: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., + config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored + (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. + + Example: + + ```python + >>> from transformers import AutoTokenizer, GptOssForCausalLM + + >>> model = GptOssForCausalLM.from_pretrained("mistralai/GptOss-8x7B-v0.1") + >>> tokenizer = AutoTokenizer.from_pretrained("mistralai/GptOss-8x7B-v0.1") + + >>> prompt = "Hey, are you conscious? Can you talk to me?" + >>> inputs = tokenizer(prompt, return_tensors="pt") + + >>> # Generate + >>> generate_ids = model.generate(inputs.input_ids, max_length=30) + >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] + "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." + ```""" + + output_router_logits = ( + output_router_logits if output_router_logits is not None else self.config.output_router_logits + ) + + # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) + outputs: MoeModelOutputWithPast = self.model( + input_ids=input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_router_logits=output_router_logits, + cache_position=cache_position, + **kwargs, + ) + + hidden_states = outputs.last_hidden_state + # Only compute necessary logits, and do not upcast them to float if we are not computing the loss + slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep + logits = self.lm_head(hidden_states[:, slice_indices, :]) + + loss = None + if labels is not None: + loss = self.loss_function(logits, labels, self.vocab_size, **kwargs) + + aux_loss = None + if output_router_logits: + aux_loss = load_balancing_loss_func( + outputs.router_logits, + self.num_experts, + self.num_experts_per_tok, + attention_mask, + ) + if labels is not None: + loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device + + return MoeCausalLMOutputWithPast( + loss=loss, + aux_loss=aux_loss, + logits=logits, + past_key_values=outputs.past_key_values, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + router_logits=outputs.router_logits, + ) + +ModelClass = GptOssForCausalLM + +__all__ = ["GptOssForCausalLM", "GptOssModel", "GptOssPreTrainedModel"] diff --git a/veomni/models/transformers/gpt_oss/parallel_plan.py b/veomni/models/transformers/gpt_oss/parallel_plan.py new file mode 100644 index 00000000..d8d4bda2 --- /dev/null +++ b/veomni/models/transformers/gpt_oss/parallel_plan.py @@ -0,0 +1,16 @@ +from torch.distributed._tensor import Shard + +from ....distributed.parallel_plan import ParallelPlan + + +def get_paralle_plan(): + ep_plan = { + "model.layers.*.mlp.experts.gate_up_proj_blocks": Shard(0), + "model.layers.*.mlp.experts.down_proj_blocks": Shard(0), + "model.layers.*.mlp.experts.gate_up_proj_bias": Shard(0), + "model.layers.*.mlp.experts.down_proj_bias": Shard(0), + } + parallel_plan = ParallelPlan( + ep_plan=ep_plan, + ) + return parallel_plan diff --git a/veomni/ops/gpt_fused_moe.py b/veomni/ops/gpt_fused_moe.py new file mode 100644 index 00000000..29233865 --- /dev/null +++ b/veomni/ops/gpt_fused_moe.py @@ -0,0 +1,267 @@ +import torch + +from ..utils.import_utils import is_fused_moe_available + + +if is_fused_moe_available(): + from .group_gemm.kernel.group_gemm import group_gemm_same_mn, group_gemm_same_nk + from .group_gemm.kernel.moe import expert_histogram, moe_gather, moe_scatter + + +class FusedMoeExpertFunction(torch.autograd.Function): + @staticmethod + def forward( + ctx, + num_experts: int, + gate_weights: torch.Tensor, + expert_index: torch.Tensor, + hidden_states: torch.Tensor, + gate_up_proj: torch.Tensor, + gate_up_proj_bias: torch.Tensor, + down_proj: torch.Tensor, + down_proj_bias: torch.Tensor, + alpha: float, + limit: float, + ): + # MOE Step 3: 分发输入 tokens 到专家(与原逻辑一致) + splits = expert_histogram(expert_index, num_experts) + scatter_index = expert_index.flatten().argsort(stable=True).argsort().int().view(expert_index.shape) + scatter_output = moe_scatter(hidden_states, scatter_index) # (total_tokens, hidden_size) + cumsum_t = torch.cumsum(splits, dim=0) + max_M = scatter_output.shape[0] + + # MOE Step 4: 合并计算 Gate 和 Up 投影(新增逻辑) + # 输入: scatter_output (total_tokens, hidden_size) + # 权重: gate_up_proj (num_experts, hidden_size, 2*expert_dim) + # 偏置: gate_up_proj_bias (num_experts, 2*expert_dim) + # 输出: gate_up (total_tokens, 2*expert_dim) + gate_up = group_gemm_same_nk( + a=scatter_output, + b=gate_up_proj, + cumsum_M=cumsum_t, + max_M=max_M, + transpose_a=False, + transpose_b=False, + ) + gate_up_bias = gate_up_proj_bias.index_select(0, expert_index.flatten()).view(gate_up.shape) + scattered_gate_up_bias = torch.empty_like(gate_up_bias) + scattered_gate_up_bias[scatter_index.flatten()] = gate_up_bias + gate_up += scattered_gate_up_bias + + # 拆分 Gate 和 Up 分量(新增逻辑) + gate = gate_up[..., ::2] # 取偶数列作为 gate + up = gate_up[..., 1::2] # 取奇数列作为 up + + # MOE Step 5: 应用修正的 SwiGLU 激活(新增逻辑) + up = up.clamp(min=-limit, max=limit) # up 双向截断 + gate = gate.clamp(min=None, max=limit) # gate 单向截断 + gate_activation = gate * torch.sigmoid(gate * alpha) # 带 alpha 缩放的 sigmoid + gate_up_activation = (up + 1) * gate_activation # (up + 1) 修正项 + + # MOE Step 8: compute the the weighted linear layer 1 result + # MOE Step 8-1: compute scattered_gate_weight, shape is (batch_size * sequence_len * topk) + reshaped_gate_weight = gate_weights.reshape(-1, 1) + scattered_gate_weight = torch.empty_like(reshaped_gate_weight) + scattered_gate_weight[scatter_index.flatten()] = reshaped_gate_weight + + # MOE Step 8-2: multiply activate with scattered_gate_weight + # fc1_weighted_output shape is (batch_size * sequence_len * topk, ffn_dim) + gate_up_output = gate_up_activation + + down_output = group_gemm_same_nk( + a=gate_up_output, + b=down_proj, + cumsum_M=cumsum_t, + max_M=max_M, + transpose_a=False, + transpose_b=False, + ) + down_output_bias = down_proj_bias.index_select(0, expert_index.flatten()).view(down_output.shape) + scattered_down_output_bias = torch.empty_like(down_output_bias) + scattered_down_output_bias[scatter_index.flatten()] = down_output_bias + down_output += scattered_down_output_bias + + expert_output = moe_gather(down_output * scattered_gate_weight, scatter_index) # 聚合 top-k 专家结果 + output = expert_output.reshape(hidden_states.shape) + + # 保存反向传播所需张量 + ctx.save_for_backward( + gate_weights, + hidden_states, + gate_up_proj, + gate_up_proj_bias, + down_proj, + down_proj_bias, + scatter_index, + scatter_output, + cumsum_t, + gate_up, + gate_up_output, + gate_up_activation, + scattered_gate_weight, + expert_index, + down_output, + ) + ctx.alpha = alpha + ctx.limit = limit + ctx.num_experts = num_experts + + return output + + @staticmethod + def backward(ctx, grad_output): + # 恢复保存的张量和超参数 + ( + gate_weights, + hidden_states, + gate_up_proj, + gate_up_proj_bias, + down_proj, + down_proj_bias, + scatter_index, + scatter_output, + cumsum_t, + gate_up, + gate_up_output, + gate_up_activation, + scattered_gate_weight, + expert_index, + down_output, + ) = ctx.saved_tensors + alpha = ctx.alpha + limit = ctx.limit + num_experts = ctx.num_experts + hidden_dim = grad_output.shape[-1] + grad_output = grad_output.view(-1, hidden_dim) + + # 反向传播核心逻辑(按前向步骤逆序) + grad_down_output = moe_scatter(grad_output, scatter_index) # Step 7 逆过程 + + grad_scattered_gate_weight = torch.sum(grad_down_output * down_output, dim=-1) + grad_down_output *= scattered_gate_weight + + # dgrad: 计算 gate_up_output 的梯度 (对应 down_proj 反向) + grad_gate_up_weight_output = group_gemm_same_nk( + a=grad_down_output, + b=down_proj, + cumsum_M=cumsum_t, + max_M=grad_output.shape[0], + transpose_b=True, + ) + + # wgrad: 计算 down_proj 的梯度 (对应 gate_up_output 反向) + grad_down_weight = None + if down_proj.requires_grad: + grad_down_weight = torch.empty_like(down_proj) + group_gemm_same_mn( + a=gate_up_output, # grad_down_output, + b=grad_down_output, # gate_up_output, + c=grad_down_weight, + cumsum_K=cumsum_t, + max_K=grad_output.shape[0], + transpose_a=True, + transpose_b=False, + ) + + # SwiGLU 激活反向传播(Step 5 逆过程) + # 2. 计算 gate 和 up 的梯度 + gate = gate_up[..., ::2] + up = gate_up[..., 1::2] + up_clamp = up.clamp(min=-limit, max=limit) + gate_clamped = gate.clamp(min=None, max=limit) + sigmoid_gate_alpha = torch.sigmoid(gate_clamped * alpha) + + # 2.1 up 梯度 (含截断) + grad_up = grad_gate_up_weight_output * gate_clamped * sigmoid_gate_alpha + grad_up[up < -limit] = 0 + grad_up[up > limit] = 0 + + # 2.2 gate 梯度 (含截断和 sigmoid 导数) + grad_gate_clamped = grad_gate_up_weight_output * (up_clamp + 1) * sigmoid_gate_alpha + grad_sigmoid = gate_clamped * grad_gate_up_weight_output * (up_clamp + 1) + grad_gate = grad_sigmoid * (sigmoid_gate_alpha * (1 - sigmoid_gate_alpha) * alpha) + grad_gate_clamped + grad_gate[gate > limit] = 0 # 截断区域梯度置零 + + # 3. 合并 gate/up 梯度并计算 gate_up_proj 梯度 + grad_gate_up = torch.zeros_like(gate_up) + grad_gate_up[..., ::2] = grad_gate + grad_gate_up[..., 1::2] = grad_up + + grad_scatter_output = group_gemm_same_nk( + a=grad_gate_up, + b=gate_up_proj, + cumsum_M=cumsum_t, + max_M=grad_output.shape[0], + transpose_b=True, + ) + + # 聚合梯度并恢复形状 + grad_hidden_states = moe_gather(grad_scatter_output, scatter_index) + grad_hidden_states = grad_hidden_states.reshape(hidden_states.shape) + + # 计算权重梯度(gate_up_proj 和 down_proj) + grad_gate_up_proj = None + if gate_up_proj.requires_grad: + grad_gate_up_proj = torch.empty_like(gate_up_proj) + group_gemm_same_mn( + a=scatter_output, + b=grad_gate_up, + c=grad_gate_up_proj, + cumsum_K=cumsum_t, + max_K=grad_output.shape[0], + transpose_a=True, + transpose_b=False, + ) + + # 偏置梯度(直接求和) + grad_gate_up_proj_bias = torch.zeros_like(gate_up_proj_bias) + grad_gate_up_proj_bias.index_add_(0, expert_index.flatten(), grad_gate_up[scatter_index.flatten()]) + + grad_down_proj_bias = torch.zeros_like(down_proj_bias) + grad_down_proj_bias.index_add_(0, expert_index.flatten(), grad_down_output[scatter_index.flatten()]) + + # 路由权重梯度 + grad_gate_weights = grad_scattered_gate_weight[scatter_index.flatten()].reshape(gate_weights.shape) + + return ( + None, # num_experts + grad_gate_weights, # gate_weights + None, # expert_index + grad_hidden_states, # hidden_states + grad_gate_up_proj, # gate_up_proj + grad_gate_up_proj_bias, # gate_up_proj_bias + grad_down_weight, # down_proj + grad_down_proj_bias, # down_proj_bias + None, # alpha(标量无梯度) + None, # limit(标量无梯度) + ) + + +def fused_moe_forward( + module: torch.nn.Module, + num_experts: int, + routing_weights: torch.Tensor, + selected_experts: torch.Tensor, + hidden_states, + gate_up_proj, # [num_experts, hidden, 2*ffn_dim],交错布局 + gate_up_proj_bias, + down_proj, # [num_experts, ffn_dim, hidden] + down_proj_bias, + limit, + alpha, +): + routing_weights = routing_weights.bfloat16() + hidden_states = hidden_states.bfloat16() + final_hidden_states = FusedMoeExpertFunction.apply( + num_experts, + routing_weights, + selected_experts, + hidden_states, + gate_up_proj, + gate_up_proj_bias, + down_proj, + down_proj_bias, + alpha, + limit, + ) + return final_hidden_states