|
99 | 99 | p_demog = st.session_state.paths["csv_demog"] |
100 | 100 | st.success(f"Data is ready ({p_demog})", icon=":material/thumb_up:") |
101 | 101 |
|
| 102 | + # Check the input data |
| 103 | + @st.dialog("Input data requirements") # type:ignore |
| 104 | + def help_input_data(): |
| 105 | + df_muse = pd.DataFrame( |
| 106 | + columns=['MRID', '702', '701', '600', '601', '...'], |
| 107 | + data=[ |
| 108 | + ['Subj1', '...', '...', '...', '...', '...'], |
| 109 | + ['Subj2', '...', '...', '...', '...', '...'], |
| 110 | + ['Subj3', '...', '...', '...', '...', '...'], |
| 111 | + ['...', '...', '...', '...', '...', '...'] |
| 112 | + ] |
| 113 | + ) |
| 114 | + st.markdown( |
| 115 | + """ |
| 116 | + ### DLMUSE File: |
| 117 | + The DLMUSE CSV file contains volumes of ROIs (Regions of Interest) segmented by the DLMUSE algorithm. This file is generated as output when DLMUSE is applied to a set of images. |
| 118 | + """ |
| 119 | + ) |
| 120 | + st.write('Example MUSE data file:') |
| 121 | + st.dataframe(df_muse) |
| 122 | + |
| 123 | + df_demog = pd.DataFrame( |
| 124 | + columns=['MRID', 'Age', 'Sex'], |
| 125 | + data=[ |
| 126 | + ['Subj1', '57', 'F'], |
| 127 | + ['Subj2', '65', 'M'], |
| 128 | + ['Subj3', '44', 'F'], |
| 129 | + ['...', '...', '...'] |
| 130 | + ] |
| 131 | + ) |
| 132 | + st.markdown( |
| 133 | + """ |
| 134 | + ### Demographics File: |
| 135 | + The DEMOGRAPHICS CSV file contains demographic information for each subject in the study. |
| 136 | + - **Required Columns:** |
| 137 | + - **MRID:** Unique subject identifier. |
| 138 | + - **Age:** Age of the subject. |
| 139 | + - **Sex:** Sex of the subject (e.g., M, F). |
| 140 | + - **Matching MRIDs:** Ensure the MRID values in this file match the corresponding MRIDs in the DLMUSE file for merging the data files. |
| 141 | + """ |
| 142 | + ) |
| 143 | + st.write('Example demographic data file:') |
| 144 | + st.dataframe(df_demog) |
| 145 | + |
| 146 | + |
| 147 | + if st.button('I need help 🤔'): |
| 148 | + help_input_data() |
| 149 | + |
102 | 150 | # Check the input data |
103 | 151 | if st.button('Verify input data'): |
104 | 152 | [f_check, m_check] = w_mlscores.check_input( |
|
0 commit comments