@@ -181,8 +181,8 @@ output1 = gng_m1("example", ncore=4)
181181## Chain 1:
182182## Chain 1:
183183## Chain 1:
184- ## Chain 1: Gradient evaluation took 0.001939 seconds
185- ## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 19.39 seconds.
184+ ## Chain 1: Gradient evaluation took 0.001829 seconds
185+ ## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 18.29 seconds.
186186## Chain 1: Adjust your expectations accordingly!
187187## Chain 1:
188188## Chain 1:
@@ -196,18 +196,18 @@ output1 = gng_m1("example", ncore=4)
196196## Chain 1:
197197## Chain 1: Begin stochastic gradient ascent.
198198## Chain 1: iter ELBO delta_ELBO_mean delta_ELBO_med notes
199- ## Chain 1: 100 -830.450 1.000 1.000
200- ## Chain 1: 200 -815.664 0.509 1.000
201- ## Chain 1: 300 -812.693 0.341 0.018
202- ## Chain 1: 400 -809.323 0.256 0.018
203- ## Chain 1: 500 -809.234 0.205 0.004 MEDIAN ELBO CONVERGED
199+ ## Chain 1: 100 -820.269 1.000 1.000
200+ ## Chain 1: 200 -810.308 0.506 1.000
201+ ## Chain 1: 300 -815.111 0.339 0.012
202+ ## Chain 1: 400 -809.368 0.256 0.012
203+ ## Chain 1: 500 -809.646 0.205 0.007 MEDIAN ELBO CONVERGED
204204## Chain 1:
205205## Chain 1: Drawing a sample of size 1000 from the approximate posterior...
206206## Chain 1: COMPLETED.
207207```
208208
209209```
210- ## Warning: Pareto k diagnostic value is 1.09 . Resampling is disabled.
210+ ## Warning: Pareto k diagnostic value is 1.25 . Resampling is disabled.
211211## Decreasing tol_rel_obj may help if variational algorithm has terminated
212212## prematurely. Otherwise consider using sampling instead.
213213```
@@ -352,16 +352,16 @@ output1$allIndPars
352352
353353```
354354## subjID xi ep rho
355- ## 1 1 0.03912684 0.1390364 5.971566
356- ## 2 2 0.03559554 0.1622292 6.154059
357- ## 3 3 0.04195460 0.1277940 5.922376
358- ## 4 4 0.03149474 0.1494447 6.223886
359- ## 5 5 0.03442572 0.1491020 6.168325
360- ## 6 6 0.04100730 0.1539260 6.288472
361- ## 7 7 0.04275452 0.1481033 5.792658
362- ## 8 8 0.03397865 0.1612648 6.510263
363- ## 9 9 0.03957498 0.1452006 6.064876
364- ## 10 10 0.04719602 0.1302818 5.554479
355+ ## 1 1 0.03937858 0.1388763 5.991021
356+ ## 2 2 0.03602277 0.1614945 6.180092
357+ ## 3 3 0.04288713 0.1274827 5.941119
358+ ## 4 4 0.03170505 0.1484355 6.262789
359+ ## 5 5 0.03462090 0.1485741 6.184602
360+ ## 6 6 0.04236850 0.1536645 6.334553
361+ ## 7 7 0.04314376 0.1491778 5.797528
362+ ## 8 8 0.03471143 0.1611320 6.538876
363+ ## 9 9 0.03987275 0.1451317 6.083010
364+ ## 10 10 0.04784353 0.1302289 5.546315
365365```
366366-->
367367
@@ -454,8 +454,8 @@ output3 = gng_m3(data="example", niter=2000, nwarmup=1000, modelRegressor=TRUE)
454454## Chain 1:
455455## Chain 1:
456456## Chain 1:
457- ## Chain 1: Gradient evaluation took 0.004173 seconds
458- ## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 41.73 seconds.
457+ ## Chain 1: Gradient evaluation took 0.00253 seconds
458+ ## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 25.3 seconds.
459459## Chain 1: Adjust your expectations accordingly!
460460## Chain 1:
461461## Chain 1:
@@ -469,18 +469,18 @@ output3 = gng_m3(data="example", niter=2000, nwarmup=1000, modelRegressor=TRUE)
469469## Chain 1:
470470## Chain 1: Begin stochastic gradient ascent.
471471## Chain 1: iter ELBO delta_ELBO_mean delta_ELBO_med notes
472- ## Chain 1: 100 -833.499 1.000 1.000
473- ## Chain 1: 200 -819.287 0.509 1.000
474- ## Chain 1: 300 -819.175 0.339 0.017
475- ## Chain 1: 400 -823.919 0.256 0.017
476- ## Chain 1: 500 -818.524 0.206 0.007 MEDIAN ELBO CONVERGED
472+ ## Chain 1: 100 -823.918 1.000 1.000
473+ ## Chain 1: 200 -826.958 0.502 1.000
474+ ## Chain 1: 300 -814.838 0.340 0.015
475+ ## Chain 1: 400 -818.443 0.256 0.015
476+ ## Chain 1: 500 -817.985 0.205 0.004 MEDIAN ELBO CONVERGED
477477## Chain 1:
478478## Chain 1: Drawing a sample of size 1000 from the approximate posterior...
479479## Chain 1: COMPLETED.
480480```
481481
482482```
483- ## Warning: Pareto k diagnostic value is 1.34 . Resampling is disabled.
483+ ## Warning: Pareto k diagnostic value is 1.14 . Resampling is disabled.
484484## Decreasing tol_rel_obj may help if variational algorithm has terminated
485485## prematurely. Otherwise consider using sampling instead.
486486```
0 commit comments