|
1 | 1 | #' Hierarchical Bayesian Modeling of Decision-Making Tasks |
2 | 2 | #' @docType package |
3 | 3 | #' @name hBayesDM-package |
4 | | -#' @aliases hBayesDM |
5 | | -#' @useDynLib hBayesDM, .registration = TRUE |
6 | | -#' |
| 4 | +#' @aliases hBayesDM |
| 5 | +#' @useDynLib hBayesDM, .registration = TRUE |
| 6 | +#' |
7 | 7 | #' @import methods |
8 | 8 | #' @import Rcpp |
9 | 9 | #' @description |
10 | 10 | #' Fit an array of decision-making tasks with computational models in a hierarchical Bayesian framework. Can perform hierarchical Bayesian analysis of various computational models with a single line of coding. |
11 | | -#' Bolded tasks, followed by their respective models, are itemized below. |
12 | | -#' |
| 11 | +#' Bolded tasks, followed by their respective models, are itemized below. |
| 12 | +#' |
13 | 13 | #' \describe{ |
14 | 14 | #' \item{\strong{Bandit}}{2-Armed Bandit (Rescorla-Wagner (delta)) --- \link{bandit2arm_delta} \cr |
15 | 15 | #' 4-Armed Bandit with fictive updating + reward/punishment sensitvity (Rescorla-Wagner (delta)) --- \link{bandit4arm_4par} \cr |
16 | 16 | #' 4-Armed Bandit with fictive updating + reward/punishment sensitvity + lapse (Rescorla-Wagner (delta)) --- \link{bandit4arm_lapse}} |
| 17 | +#' \item{\strong{Bandit2}}{Kalman filter --- \link{bandit4arm2_kalman_filter}} |
| 18 | +#' \item{\strong{Choice RT}}{Drift Diffusion Model --- \link{choiceRT_ddm} \cr |
| 19 | +#' Drift Diffusion Model for a single subject --- \link{choiceRT_ddm_single} \cr |
| 20 | +#' Linear Ballistic Accumulator (LBA) model --- \link{choiceRT_lba} \cr |
| 21 | +#' Linear Ballistic Accumulator (LBA) model for a single subject --- \link{choiceRT_lba_single}} |
| 22 | +#' \item{\strong{Choice under Risk and Ambiguity}}{Exponential model --- \link{cra_exp} \cr |
| 23 | +#' Linear model --- \link{cra_linear}} |
| 24 | +#' \item{\strong{Description-Based Decision Making}}{probability weight function --- \link{dbdm_prob_weight}} |
17 | 25 | #' \item{\strong{Delay Discounting}}{Constant Sensitivity --- \link{dd_cs} \cr |
18 | | -#' Constant Sensitivity for single subject --- \link{dd_cs_single} \cr |
| 26 | +#' Constant Sensitivity for a single subject --- \link{dd_cs_single} \cr |
19 | 27 | #' Exponential --- \link{dd_exp} \cr |
20 | 28 | #' Hyperbolic --- \link{dd_hyperbolic} \cr |
21 | | -#' Hyperbolic for single subject --- \link{dd_hyperbolic_single}} |
| 29 | +#' Hyperbolic for a single subject --- \link{dd_hyperbolic_single}} |
22 | 30 | #' \item{\strong{Orthogonalized Go/Nogo}}{RW + Noise --- \link{gng_m1} \cr |
23 | 31 | #' RW + Noise + Bias --- \link{gng_m2} \cr |
24 | 32 | #' RW + Noise + Bias + Pavlovian Bias --- \link{gng_m3} \cr |
25 | 33 | #' RW(modified) + Noise + Bias + Pavlovian Bias --- \link{gng_m4}} |
26 | | -#' \item{\strong{Iowa Gambling}}{Prospect Valence Learning-DecayRI --- \link{igt_pvl_decay} \cr |
| 34 | +#' \item{\strong{Iowa Gambling}}{Outcome-Representation Learning --- \link{igt_orl} \cr |
| 35 | +#' Prospect Valence Learning-DecayRI --- \link{igt_pvl_decay} \cr |
27 | 36 | #' Prospect Valence Learning-Delta --- \link{igt_pvl_delta} \cr |
28 | 37 | #' Value-Plus_Perseverance --- \link{igt_vpp}} |
29 | 38 | #' \item{\strong{Peer influence task}}{OCU model --- \link{peer_ocu}} |
30 | | -#' \item{\strong{Probabilistic Reversal Learning}}{Fictitious Update --- \link{prl_fictitious} \cr |
| 39 | +#' \item{\strong{Probabilistic Reversal Learning}}{Experience-Weighted Attraction --- \link{prl_ewa} \cr |
| 40 | +#' Fictitious Update --- \link{prl_fictitious} \cr |
31 | 41 | #' Fictitious Update w/o alpha (indecision point) --- \link{prl_fictitious_woa} \cr |
32 | 42 | #' Fictitious Update and multiple blocks per subject --- \link{prl_fictitious_multipleB} \cr |
33 | | -#' Experience-Weighted Attraction --- \link{prl_ewa} \cr |
34 | 43 | #' Reward-Punishment --- \link{prl_rp} \cr |
35 | 44 | #' Reward-Punishment and multiple blocks per subject --- \link{prl_rp_multipleB} \cr |
36 | 45 | #' Fictitious Update with separate learning for Reward-Punishment --- \link{prl_fictitious_rp} \cr |
37 | 46 | #' Fictitious Update with separate learning for Reward-Punishment w/o alpha (indecision point) --- \link{prl_fictitious_rp_woa}} |
| 47 | +#' \item{\strong{Probabilistic Selection Task}}{Q-learning with two learning rates --- \link{pst_gainloss_Q}} |
38 | 48 | #' \item{\strong{Risk Aversion}}{Prospect Theory (PT) --- \link{ra_prospect} \cr |
39 | 49 | #' PT without a loss aversion parameter --- \link{ra_noLA} \cr |
40 | 50 | #' PT without a risk aversion parameter --- \link{ra_noRA}} |
41 | | -#' \item{\strong{Ultimatum Game}}{Ideal Bayesian Observer --- \link{ug_bayes} \cr |
42 | | -#' Rescorla-Wagner (delta) --- \link{ug_delta}} |
43 | | -#' \item{\strong{Choice/Reaction time}}{Drift Diffusion Model --- \link{choiceRT_ddm} \cr |
44 | | -#' Drift Diffusion Model for single subject --- \link{choiceRT_ddm_single} \cr |
45 | | -#' Linear Ballistic Accumulator --- \link{choiceRT_lba} \cr |
46 | | -#' Linear Ballistic Accumulator for single subject --- \link{choiceRT_lba_single}} |
| 51 | +#' \item{\strong{Risky Decision Task}}{Happiness model --- \link{rdt_happiness}} |
47 | 52 | #' \item{\strong{Two-Step task}}{Full model (7 parameters) --- \link{ts_par7} \cr |
48 | 53 | #' 6 parameter model (without eligibility trace, lambda) --- \link{ts_par6} \cr |
49 | 54 | #' 4 parameter model --- \link{ts_par4}} |
50 | | -#' |
| 55 | +#' \item{\strong{Ultimatum Game}}{Ideal Bayesian Observer --- \link{ug_bayes} \cr |
| 56 | +#' Rescorla-Wagner (delta) --- \link{ug_delta}} |
| 57 | +#' |
51 | 58 | #' } |
52 | | -#' |
53 | | -#' @seealso |
| 59 | +#' |
| 60 | +#' @seealso |
54 | 61 | #' For tutorials and further readings, visit : \url{http://rpubs.com/CCSL/hBayesDM}. |
55 | | -#' |
56 | | -#' @references |
57 | | -#' Please cite as: |
| 62 | +#' |
| 63 | +#' @references |
| 64 | +#' Please cite as: |
58 | 65 | #' Ahn, W.-Y., Haines, N., & Zhang, L. (2017). Revealing neuro-computational mechanisms of reinforcement learning and decision-making with the hBayesDM package. \emph{Computational Psychiatry}. 1, 24-57. https://doi.org/10.1162/CPSY_a_00002 |
59 | 66 | #' |
60 | 67 | #' @author |
61 | | -#' Woo-Young Ahn \email{wooyoung.ahn@@gmail.com} |
| 68 | +#' Woo-Young Ahn \email{wahn55@@snu.ac.kr} |
62 | 69 | #' |
63 | 70 | #' Nathaniel Haines \email{haines.175@@osu.edu} |
64 | 71 | #' |
|
0 commit comments