Skip to content

Commit 778b666

Browse files
committed
Feat: Various doc changes
1 parent 34dab51 commit 778b666

File tree

6 files changed

+48
-46
lines changed

6 files changed

+48
-46
lines changed

cesnet_tszoo/benchmarks.py

Lines changed: 24 additions & 24 deletions
Original file line numberDiff line numberDiff line change
@@ -30,34 +30,34 @@ class Benchmark:
3030
3131
For time-based:
3232
33-
When using [`TimeBasedCesnetDataset`][cesnet_tszoo.datasets.time_based_cesnet_dataset.TimeBasedCesnetDataset] (`dataset_type` = `DatasetType.TIME_BASED`):
33+
When using [`TimeBasedCesnetDataset`](reference_time_based_cesnet_dataset.md#cesnet_tszoo.datasets.time_based_cesnet_dataset.TimeBasedCesnetDataset) (`dataset_type` = `DatasetType.TIME_BASED`):
3434
35-
1. Create an instance of the dataset with the desired data root by calling [`get_dataset`][cesnet_tszoo.datasets.databases.CesnetDatabase.get_dataset]. This will download the dataset if it has not been previously downloaded and return instance of dataset.
36-
2. Create an instance of [`TimeBasedConfig`][cesnet_tszoo.references.configs.TimeBasedConfig] and set it using [`set_dataset_config_and_initialize`][cesnet_tszoo.datasets.time_based_cesnet_dataset.TimeBasedCesnetDataset.set_dataset_config_and_initialize].
35+
1. Create an instance of the dataset with the desired data root by calling [`get_dataset`](reference_cesnet_database.md#cesnet_tszoo.datasets.databases.cesnet_database.CesnetDatabase.get_dataset). This will download the dataset if it has not been previously downloaded and return instance of dataset.
36+
2. Create an instance of [`TimeBasedConfig`](reference_time_based_config.md#references.TimeBasedConfig) and set it using [`set_dataset_config_and_initialize`](reference_time_based_cesnet_dataset.md#cesnet_tszoo.datasets.time_based_cesnet_dataset.TimeBasedCesnetDataset.set_dataset_config_and_initialize).
3737
This initializes the dataset, including data splitting (train/validation/test), fitting transformers (if needed), selecting features, and more. This is cached for later use.
38-
3. Use [`get_train_dataloader`][cesnet_tszoo.datasets.time_based_cesnet_dataset.TimeBasedCesnetDataset.get_train_dataloader]/[`get_train_df`][cesnet_tszoo.datasets.time_based_cesnet_dataset.TimeBasedCesnetDataset.get_train_df]/[`get_train_numpy`][cesnet_tszoo.datasets.time_based_cesnet_dataset.TimeBasedCesnetDataset.get_train_numpy] to get training data for chosen model.
39-
4. Validate the model and perform the hyperparameter optimalization on [`get_val_dataloader`][cesnet_tszoo.datasets.time_based_cesnet_dataset.TimeBasedCesnetDataset.get_val_dataloader]/[`get_val_df`][cesnet_tszoo.datasets.time_based_cesnet_dataset.TimeBasedCesnetDataset.get_val_df]/[`get_val_numpy`][cesnet_tszoo.datasets.time_based_cesnet_dataset.TimeBasedCesnetDataset.get_val_numpy].
40-
5. Evaluate the model on [`get_test_dataloader`][cesnet_tszoo.datasets.time_based_cesnet_dataset.TimeBasedCesnetDataset.get_test_dataloader]/[`get_test_df`][cesnet_tszoo.datasets.time_based_cesnet_dataset.TimeBasedCesnetDataset.get_test_df]/[`get_test_numpy`][cesnet_tszoo.datasets.time_based_cesnet_dataset.TimeBasedCesnetDataset.get_test_numpy].
38+
3. Use [`get_train_dataloader`](reference_time_based_cesnet_dataset.md#cesnet_tszoo.datasets.time_based_cesnet_dataset.TimeBasedCesnetDataset)/[`get_train_df`](reference_time_based_cesnet_dataset.md#cesnet_tszoo.datasets.time_based_cesnet_dataset.TimeBasedCesnetDataset.get_train_df)/[`get_train_numpy`](reference_time_based_cesnet_dataset.md#cesnet_tszoo.datasets.time_based_cesnet_dataset.TimeBasedCesnetDataset.get_train_numpy) to get training data for chosen model.
39+
4. Validate the model and perform the hyperparameter optimalization on [`get_val_dataloader`](reference_time_based_cesnet_dataset.md#cesnet_tszoo.datasets.time_based_cesnet_dataset.TimeBasedCesnetDataset.get_val_dataloader)/[`get_val_df`](reference_time_based_cesnet_dataset.md#cesnet_tszoo.datasets.time_based_cesnet_dataset.TimeBasedCesnetDataset.get_val_df)/[`get_val_numpy`](reference_time_based_cesnet_dataset.md#cesnet_tszoo.datasets.time_based_cesnet_dataset.TimeBasedCesnetDataset.get_val_numpy).
40+
5. Evaluate the model on [`get_test_dataloader`](reference_time_based_cesnet_dataset.md#cesnet_tszoo.datasets.time_based_cesnet_dataset.TimeBasedCesnetDataset.get_test_dataloader)/[`get_test_df`](reference_time_based_cesnet_dataset.md#cesnet_tszoo.datasets.time_based_cesnet_dataset.TimeBasedCesnetDataset.get_test_df)/[`get_test_numpy`](reference_time_based_cesnet_dataset.md#cesnet_tszoo.datasets.time_based_cesnet_dataset.TimeBasedCesnetDataset.get_test_numpy).
4141
42-
When using [`SeriesBasedCesnetDataset`][cesnet_tszoo.datasets.series_based_cesnet_dataset.SeriesBasedCesnetDataset] (`dataset_type` = `DatasetType.SERIES_BASED`):
42+
When using [`SeriesBasedCesnetDataset`](reference_series_based_cesnet_dataset.md#cesnet_tszoo.datasets.series_based_cesnet_dataset.SeriesBasedCesnetDataset) (`dataset_type` = `DatasetType.SERIES_BASED`):
4343
44-
1. Create an instance of the dataset with the desired data root by calling [`get_dataset`][cesnet_tszoo.datasets.databases.CesnetDatabase.get_dataset]. This will download the dataset if it has not been previously downloaded and return instance of dataset.
45-
2. Create an instance of [`SeriesBasedConfig`][cesnet_tszoo.references.configs.SeriesBasedConfig] and set it using [`set_dataset_config_and_initialize`][cesnet_tszoo.datasets.series_based_cesnet_dataset.SeriesBasedCesnetDataset.set_dataset_config_and_initialize].
44+
1. Create an instance of the dataset with the desired data root by calling [`get_dataset`](reference_cesnet_database.md#cesnet_tszoo.datasets.databases.cesnet_database.CesnetDatabase.get_dataset). This will download the dataset if it has not been previously downloaded and return instance of dataset.
45+
2. Create an instance of [`SeriesBasedConfig`](reference_series_based_config.md#references.SeriesBasedConfig) and set it using [`set_dataset_config_and_initialize`](reference_series_based_cesnet_dataset.md#cesnet_tszoo.datasets.series_based_cesnet_dataset.SeriesBasedCesnetDataset.set_dataset_config_and_initialize).
4646
This initializes the dataset, including data splitting (train/validation/test), fitting transformers (if needed), selecting features, and more. This is cached for later use.
47-
3. Use [`get_train_dataloader`][cesnet_tszoo.datasets.series_based_cesnet_dataset.SeriesBasedCesnetDataset.get_train_dataloader]/[`get_train_df`][cesnet_tszoo.datasets.series_based_cesnet_dataset.SeriesBasedCesnetDataset.get_train_df]/[`get_train_numpy`][cesnet_tszoo.datasets.series_based_cesnet_dataset.SeriesBasedCesnetDataset.get_train_numpy] to get training data for chosen model.
48-
4. Validate the model and perform the hyperparameter optimalization on [`get_val_dataloader`][cesnet_tszoo.datasets.series_based_cesnet_dataset.SeriesBasedCesnetDataset.get_val_dataloader]/[`get_val_df`][cesnet_tszoo.datasets.series_based_cesnet_dataset.SeriesBasedCesnetDataset.get_val_df]/[`get_val_numpy`][cesnet_tszoo.datasets.series_based_cesnet_dataset.SeriesBasedCesnetDataset.get_val_numpy].
49-
5. Evaluate the model on [`get_test_dataloader`][cesnet_tszoo.datasets.series_based_cesnet_dataset.SeriesBasedCesnetDataset.get_test_dataloader]/[`get_test_df`][cesnet_tszoo.datasets.series_based_cesnet_dataset.SeriesBasedCesnetDataset.get_test_df]/[`get_test_numpy`][cesnet_tszoo.datasets.series_based_cesnet_dataset.SeriesBasedCesnetDataset.get_test_numpy].
47+
3. Use [`get_train_dataloader`](reference_series_based_cesnet_dataset.md#cesnet_tszoo.datasets.series_based_cesnet_dataset.SeriesBasedCesnetDataset.get_train_dataloader)/[`get_train_df`](reference_series_based_cesnet_dataset.md#cesnet_tszoo.datasets.series_based_cesnet_dataset.SeriesBasedCesnetDataset.get_train_df)/[`get_train_numpy`](reference_series_based_cesnet_dataset.md#cesnet_tszoo.datasets.series_based_cesnet_dataset.SeriesBasedCesnetDataset.get_train_numpy) to get training data for chosen model.
48+
4. Validate the model and perform the hyperparameter optimalization on [`get_val_dataloader`](reference_series_based_cesnet_dataset.md#cesnet_tszoo.datasets.series_based_cesnet_dataset.SeriesBasedCesnetDataset.get_val_dataloader)/[`get_val_df`](reference_series_based_cesnet_dataset.md#cesnet_tszoo.datasets.series_based_cesnet_dataset.SeriesBasedCesnetDataset.get_val_df)/[`get_val_numpy`](reference_series_based_cesnet_dataset.md#cesnet_tszoo.datasets.series_based_cesnet_dataset.SeriesBasedCesnetDataset.get_val_numpy).
49+
5. Evaluate the model on [`get_test_dataloader`](reference_series_based_cesnet_dataset.md#cesnet_tszoo.datasets.series_based_cesnet_dataset.SeriesBasedCesnetDataset.get_test_dataloader)/[`get_test_df`](reference_series_based_cesnet_dataset.md#cesnet_tszoo.datasets.series_based_cesnet_dataset.SeriesBasedCesnetDataset.get_test_df)/[`get_test_numpy`](reference_series_based_cesnet_dataset.md#cesnet_tszoo.datasets.series_based_cesnet_dataset.SeriesBasedCesnetDataset.get_test_numpy).
5050
51-
When using [`DisjointTimeBasedCesnetDataset`][cesnet_tszoo.datasets.disjoint_time_based_cesnet_dataset.DisjointTimeBasedCesnetDataset] (`dataset_type` = `DatasetType.DISJOINT_TIME_BASED`):
51+
When using [`DisjointTimeBasedCesnetDataset`](reference_disjoint_time_based_cesnet_dataset.md#cesnet_tszoo.datasets.disjoint_time_based_cesnet_dataset.DisjointTimeBasedCesnetDataset) (`dataset_type` = `DatasetType.DISJOINT_TIME_BASED`):
5252
53-
1. Create an instance of the dataset with the desired data root by calling [`get_dataset`][cesnet_tszoo.datasets.databases.CesnetDatabase.get_dataset]. This will download the dataset if it has not been previously downloaded and return instance of dataset.
54-
2. Create an instance of [`DisjointTimeBasedConfig`][cesnet_tszoo.references.configs.DisjointTimeBasedConfig] and set it using [`set_dataset_config_and_initialize`][cesnet_tszoo.datasets.disjoint_time_based_cesnet_dataset.DisjointTimeBasedCesnetDataset.set_dataset_config_and_initialize].
53+
1. Create an instance of the dataset with the desired data root by calling [`get_dataset`](reference_cesnet_database.md#cesnet_tszoo.datasets.databases.cesnet_database.CesnetDatabase.get_dataset). This will download the dataset if it has not been previously downloaded and return instance of dataset.
54+
2. Create an instance of [`DisjointTimeBasedConfig`](reference_disjoint_time_based_config.md#references.DisjointTimeBasedConfig) and set it using [`set_dataset_config_and_initialize`](reference_disjoint_time_based_cesnet_dataset.md#cesnet_tszoo.datasets.disjoint_time_based_cesnet_dataset.DisjointTimeBasedCesnetDataset.set_dataset_config_and_initialize).
5555
This initializes the dataset, including data splitting (train/validation/test), fitting transformers (if needed), selecting features, and more. This is cached for later use.
56-
3. Use [`get_train_dataloader`][cesnet_tszoo.datasets.disjoint_time_based_cesnet_dataset.DisjointTimeBasedCesnetDataset.get_train_dataloader]/[`get_train_df`][cesnet_tszoo.datasets.disjoint_time_based_cesnet_dataset.DisjointTimeBasedCesnetDataset.get_train_df]/[`get_train_numpy`][cesnet_tszoo.datasets.disjoint_time_based_cesnet_dataset.DisjointTimeBasedCesnetDataset.get_train_numpy] to get training data for chosen model.
57-
4. Validate the model and perform the hyperparameter optimalization on [`get_val_dataloader`][cesnet_tszoo.datasets.disjoint_time_based_cesnet_dataset.DisjointTimeBasedCesnetDataset.get_val_dataloader]/[`get_val_df`][cesnet_tszoo.datasets.disjoint_time_based_cesnet_dataset.DisjointTimeBasedCesnetDataset.get_val_df]/[`get_val_numpy`][cesnet_tszoo.datasets.disjoint_time_based_cesnet_dataset.DisjointTimeBasedCesnetDataset.get_val_numpy].
58-
5. Evaluate the model on [`get_test_dataloader`][cesnet_tszoo.datasets.disjoint_time_based_cesnet_dataset.DisjointTimeBasedCesnetDataset.get_test_dataloader]/[`get_test_df`][cesnet_tszoo.datasets.disjoint_time_based_cesnet_dataset.DisjointTimeBasedCesnetDataset.get_test_df]/[`get_test_numpy`][cesnet_tszoo.datasets.disjoint_time_based_cesnet_dataset.DisjointTimeBasedCesnetDataset.get_test_numpy].
56+
3. Use [`get_train_dataloader`](reference_disjoint_time_based_cesnet_dataset.md#cesnet_tszoo.datasets.disjoint_time_based_cesnet_dataset.DisjointTimeBasedCesnetDataset.get_train_dataloader)/[`get_train_df`](reference_disjoint_time_based_cesnet_dataset.md#cesnet_tszoo.datasets.disjoint_time_based_cesnet_dataset.DisjointTimeBasedCesnetDataset.get_train_df)/[`get_train_numpy`](reference_disjoint_time_based_cesnet_dataset.md#cesnet_tszoo.datasets.disjoint_time_based_cesnet_dataset.DisjointTimeBasedCesnetDataset.get_train_numpy) to get training data for chosen model.
57+
4. Validate the model and perform the hyperparameter optimalization on [`get_val_dataloader`](reference_disjoint_time_based_cesnet_dataset.md#cesnet_tszoo.datasets.disjoint_time_based_cesnet_dataset.DisjointTimeBasedCesnetDataset.get_val_dataloader)/[`get_val_df`](reference_disjoint_time_based_cesnet_dataset.md#cesnet_tszoo.datasets.disjoint_time_based_cesnet_dataset.DisjointTimeBasedCesnetDataset.get_val_df)/[`get_val_numpy`](reference_disjoint_time_based_cesnet_dataset.md#cesnet_tszoo.datasets.disjoint_time_based_cesnet_dataset.DisjointTimeBasedCesnetDataset.get_val_numpy).
58+
5. Evaluate the model on [`get_test_dataloader`](reference_disjoint_time_based_cesnet_dataset.md#cesnet_tszoo.datasets.disjoint_time_based_cesnet_dataset.DisjointTimeBasedCesnetDataset.get_test_dataloader)/[`get_test_df`](reference_disjoint_time_based_cesnet_dataset.md#cesnet_tszoo.datasets.disjoint_time_based_cesnet_dataset.DisjointTimeBasedCesnetDataset.get_test_df)/[`get_test_numpy`](reference_disjoint_time_based_cesnet_dataset.md#cesnet_tszoo.datasets.disjoint_time_based_cesnet_dataset.DisjointTimeBasedCesnetDataset.get_test_numpy).
5959
60-
You can create custom time-based benchmarks with [`save_benchmark`][cesnet_tszoo.datasets.time_based_cesnet_dataset.TimeBasedCesnetDataset.save_benchmark], series-based benchmarks with [`save_benchmark`][cesnet_tszoo.datasets.series_based_cesnet_dataset.SeriesBasedCesnetDataset.save_benchmark] or disjoint-time-based with [`save_benchmark`][cesnet_tszoo.datasets.disjoint_time_based_cesnet_dataset.DisjointTimeBasedCesnetDataset.save_benchmark].
60+
You can create custom time-based benchmarks with [`save_benchmark`](reference_time_based_cesnet_dataset.md#cesnet_tszoo.datasets.time_based_cesnet_dataset.TimeBasedCesnetDataset.save_benchmark), series-based benchmarks with [`save_benchmark`](reference_series_based_cesnet_dataset.md#cesnet_tszoo.datasets.series_based_cesnet_dataset.SeriesBasedCesnetDataset.save_benchmark) or disjoint-time-based with [`save_benchmark`](reference_disjoint_time_based_cesnet_dataset.md#cesnet_tszoo.datasets.disjoint_time_based_cesnet_dataset.DisjointTimeBasedCesnetDataset.save_benchmark).
6161
They will be saved to `"data_root"/tszoo/benchmarks/` directory, where `data_root` was set when you created instance of dataset.
6262
"""
6363

@@ -79,11 +79,11 @@ def get_initialized_dataset(self, display_config_details: Optional[Literal["text
7979
8080
This method uses following config attributes:
8181
82-
| Dataset config | Description |
83-
| --------------------------------- | ---------------------------------------------------------------------------------------------- |
84-
| `init_workers` | Specifies the number of workers to use for initialization. Applied when `workers` = "config". |
85-
| `partial_fit_initialized_transformers` | Determines whether initialized transformers should be partially fitted on the training data. |
86-
| `nan_threshold` | Filters out time series with missing values exceeding the specified threshold. |
82+
Dataset config | Description
83+
-------------- | -----------
84+
`init_workers` | Specifies the number of workers to use for initialization. Applied when `workers` = "config".
85+
`partial_fit_initialized_transformers` | Determines whether initialized transformers should be partially fitted on the training data.
86+
`nan_threshold` | Filters out time series with missing values exceeding the specified threshold.
8787
8888
Parameters:
8989
display_config_details: Flag indicating whether to display the configuration values after initialization. `Default: True`

docs/choosing_data.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@ This tutorial will look at some configuration options for choosing data you wish
44

55
Each dataset type will have its own part because of multiple differences of available configuration values.
66

7-
## [`TimeBasedCesnetDataset`][cesnet_tszoo.datasets.time_based_cesnet_dataset.TimeBasedCesnetDataset] dataset
7+
## [`TimeBasedCesnetDataset`](reference_time_based_cesnet_dataset.md#cesnet_tszoo.datasets.time_based_cesnet_dataset.TimeBasedCesnetDataset) dataset
88

99
!!! info "Note"
1010
For every configuration and more detailed examples refer to Jupyter notebook [`time_based_choosing_data`](https://github.com/CESNET/cesnet-ts-zoo-tutorials/blob/main/time_based_choosing_data.ipynb)
@@ -113,7 +113,7 @@ time_based_dataset.set_dataset_config_and_initialize(config)
113113

114114
```
115115

116-
## [`DisjointTimeBasedCesnetDataset`][cesnet_tszoo.datasets.disjoint_time_based_cesnet_dataset.DisjointTimeBasedCesnetDataset] dataset
116+
## [`DisjointTimeBasedCesnetDataset`](reference_disjoint_time_based_cesnet_dataset.md#cesnet_tszoo.datasets.disjoint_time_based_cesnet_dataset.DisjointTimeBasedCesnetDataset) dataset
117117

118118
!!! info "Note"
119119
For every configuration and more detailed examples refer to Jupyter notebook [`disjoint_time_based_choosing_data`](https://github.com/CESNET/cesnet-ts-zoo-tutorials/blob/main/disjoint_time_based_choosing_data.ipynb)
@@ -207,7 +207,7 @@ disjoint_dataset.set_dataset_config_and_initialize(config)
207207

208208
```
209209

210-
## [`SeriesBasedCesnetDataset`][cesnet_tszoo.datasets.series_based_cesnet_dataset.SeriesBasedCesnetDataset] dataset
210+
## [`SeriesBasedCesnetDataset`](reference_series_based_cesnet_dataset.md#cesnet_tszoo.datasets.series_based_cesnet_dataset.SeriesBasedCesnetDataset) dataset
211211

212212
!!! info "Note"
213213
For every configuration and more detailed examples refer to Jupyter notebook [`series_based_choosing_data`](https://github.com/CESNET/cesnet-ts-zoo-tutorials/blob/main/series_based_choosing_data.ipynb)

0 commit comments

Comments
 (0)