|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# Example of usage for simple forecasting" |
| 8 | + ] |
| 9 | + }, |
| 10 | + { |
| 11 | + "cell_type": "markdown", |
| 12 | + "metadata": {}, |
| 13 | + "source": [ |
| 14 | + "### Import" |
| 15 | + ] |
| 16 | + }, |
| 17 | + { |
| 18 | + "cell_type": "code", |
| 19 | + "execution_count": 1, |
| 20 | + "metadata": {}, |
| 21 | + "outputs": [], |
| 22 | + "source": [ |
| 23 | + "import tqdm\n", |
| 24 | + "import torch\n", |
| 25 | + "import torch.nn as nn\n", |
| 26 | + "import torch.optim as optim\n", |
| 27 | + "import numpy as np\n", |
| 28 | + "from sklearn.metrics import mean_squared_error\n", |
| 29 | + "\n", |
| 30 | + "from cesnet_tszoo.utils.enums import FillerType, ScalerType\n", |
| 31 | + "from cesnet_tszoo.benchmarks import load_benchmark" |
| 32 | + ] |
| 33 | + }, |
| 34 | + { |
| 35 | + "cell_type": "markdown", |
| 36 | + "metadata": {}, |
| 37 | + "source": [ |
| 38 | + "### Preparing dataset" |
| 39 | + ] |
| 40 | + }, |
| 41 | + { |
| 42 | + "cell_type": "code", |
| 43 | + "execution_count": 2, |
| 44 | + "metadata": {}, |
| 45 | + "outputs": [ |
| 46 | + { |
| 47 | + "name": "stdout", |
| 48 | + "output_type": "stream", |
| 49 | + "text": [ |
| 50 | + "File size: 0.01GB\n", |
| 51 | + "Remaining: 0.01GB\n" |
| 52 | + ] |
| 53 | + }, |
| 54 | + { |
| 55 | + "name": "stderr", |
| 56 | + "output_type": "stream", |
| 57 | + "text": [ |
| 58 | + "100%|██████████| 9.59M/9.59M [00:00<00:00, 25.2MB/s]\n", |
| 59 | + "100%|██████████| 283/283 [00:03<00:00, 71.15it/s]" |
| 60 | + ] |
| 61 | + }, |
| 62 | + { |
| 63 | + "name": "stdout", |
| 64 | + "output_type": "stream", |
| 65 | + "text": [ |
| 66 | + "\n", |
| 67 | + "Config Details\n", |
| 68 | + " Used for database: CESNET-TimeSeries24\n", |
| 69 | + " Aggregation: AgreggationType.AGG_1_DAY\n", |
| 70 | + " Source: SourceType.INSTITUTIONS\n", |
| 71 | + "\n", |
| 72 | + " Time series\n", |
| 73 | + " Time series IDS: [ 30 222 276 48 243 ... 112 19 15 101 117], Length=283\n", |
| 74 | + " Test time series IDS: None\n", |
| 75 | + " Time periods\n", |
| 76 | + " Train time periods: range(0, 168)\n", |
| 77 | + " Val time periods: range(161, 196)\n", |
| 78 | + " Test time periods: range(189, 280)\n", |
| 79 | + " All time periods: range(0, 280)\n", |
| 80 | + " Features\n", |
| 81 | + " Taken features: ['n_bytes']\n", |
| 82 | + " Default values: [nan]\n", |
| 83 | + " Time series ID included: False\n", |
| 84 | + " Time included: False\n", |
| 85 | + " Sliding window\n", |
| 86 | + " Sliding window size: 7\n", |
| 87 | + " Sliding window prediction size: 1\n", |
| 88 | + " Sliding window step size: 1\n", |
| 89 | + " Set shared size: 7\n", |
| 90 | + " Fillers\n", |
| 91 | + " Filler type: None\n", |
| 92 | + " Scalers\n", |
| 93 | + " Scaler type: None\n", |
| 94 | + " Batch sizes\n", |
| 95 | + " Train batch size: 32\n", |
| 96 | + " Val batch size: 64\n", |
| 97 | + " Test batch size: 128\n", |
| 98 | + " All batch size: 128\n", |
| 99 | + " Default workers\n", |
| 100 | + " Init worker count: 4\n", |
| 101 | + " Train worker count: 4\n", |
| 102 | + " Val worker count: 3\n", |
| 103 | + " Test worker count: 2\n", |
| 104 | + " All worker count: 4\n", |
| 105 | + " Other\n", |
| 106 | + " Nan threshold: 1.0\n", |
| 107 | + " Random state: None\n", |
| 108 | + " \n" |
| 109 | + ] |
| 110 | + }, |
| 111 | + { |
| 112 | + "name": "stderr", |
| 113 | + "output_type": "stream", |
| 114 | + "text": [ |
| 115 | + "\n" |
| 116 | + ] |
| 117 | + } |
| 118 | + ], |
| 119 | + "source": [ |
| 120 | + "benchmark = load_benchmark(identifier=\"0d523e69c328\", data_root=\"/some_directory/\")\n", |
| 121 | + "dataset = benchmark.get_initialized_dataset()" |
| 122 | + ] |
| 123 | + }, |
| 124 | + { |
| 125 | + "cell_type": "markdown", |
| 126 | + "metadata": {}, |
| 127 | + "source": [ |
| 128 | + "### Changing used config values" |
| 129 | + ] |
| 130 | + }, |
| 131 | + { |
| 132 | + "cell_type": "code", |
| 133 | + "execution_count": 3, |
| 134 | + "metadata": {}, |
| 135 | + "outputs": [ |
| 136 | + { |
| 137 | + "name": "stderr", |
| 138 | + "output_type": "stream", |
| 139 | + "text": [ |
| 140 | + "100%|██████████| 283/283 [00:03<00:00, 72.20it/s]\n", |
| 141 | + "100%|██████████| 283/283 [00:04<00:00, 70.63it/s]\n", |
| 142 | + "100%|██████████| 283/283 [00:03<00:00, 70.90it/s]\n", |
| 143 | + "100%|██████████| 283/283 [00:03<00:00, 72.05it/s]" |
| 144 | + ] |
| 145 | + }, |
| 146 | + { |
| 147 | + "name": "stdout", |
| 148 | + "output_type": "stream", |
| 149 | + "text": [ |
| 150 | + "\n", |
| 151 | + "Config Details\n", |
| 152 | + " Used for database: CESNET-TimeSeries24\n", |
| 153 | + " Aggregation: AgreggationType.AGG_1_DAY\n", |
| 154 | + " Source: SourceType.INSTITUTIONS\n", |
| 155 | + "\n", |
| 156 | + " Time series\n", |
| 157 | + " Time series IDS: [ 30 222 276 48 243 ... 112 19 15 101 117], Length=283\n", |
| 158 | + " Test time series IDS: None\n", |
| 159 | + " Time periods\n", |
| 160 | + " Train time periods: range(0, 168)\n", |
| 161 | + " Val time periods: range(144, 196)\n", |
| 162 | + " Test time periods: range(172, 280)\n", |
| 163 | + " All time periods: range(0, 280)\n", |
| 164 | + " Features\n", |
| 165 | + " Taken features: ['n_bytes']\n", |
| 166 | + " Default values: [0.]\n", |
| 167 | + " Time series ID included: False\n", |
| 168 | + " Time included: False\n", |
| 169 | + " Sliding window\n", |
| 170 | + " Sliding window size: 24\n", |
| 171 | + " Sliding window prediction size: 1\n", |
| 172 | + " Sliding window step size: 1\n", |
| 173 | + " Set shared size: 24\n", |
| 174 | + " Fillers\n", |
| 175 | + " Filler type: mean_filler\n", |
| 176 | + " Scalers\n", |
| 177 | + " Scaler type: min_max_scaler\n", |
| 178 | + " Is scaler per Time series: True\n", |
| 179 | + " Are scalers premade: False\n", |
| 180 | + " Are premade scalers partial_fitted: False\n", |
| 181 | + " Batch sizes\n", |
| 182 | + " Train batch size: 32\n", |
| 183 | + " Val batch size: 64\n", |
| 184 | + " Test batch size: 128\n", |
| 185 | + " All batch size: 128\n", |
| 186 | + " Default workers\n", |
| 187 | + " Init worker count: 4\n", |
| 188 | + " Train worker count: 4\n", |
| 189 | + " Val worker count: 3\n", |
| 190 | + " Test worker count: 2\n", |
| 191 | + " All worker count: 4\n", |
| 192 | + " Other\n", |
| 193 | + " Nan threshold: 1.0\n", |
| 194 | + " Random state: None\n", |
| 195 | + " \n" |
| 196 | + ] |
| 197 | + }, |
| 198 | + { |
| 199 | + "name": "stderr", |
| 200 | + "output_type": "stream", |
| 201 | + "text": [ |
| 202 | + "\n" |
| 203 | + ] |
| 204 | + } |
| 205 | + ], |
| 206 | + "source": [ |
| 207 | + "# (optional) Set default value for missing data \n", |
| 208 | + "dataset.set_default_values(0)\n", |
| 209 | + "\n", |
| 210 | + "# (optional) Set filler for filling missing data \n", |
| 211 | + "dataset.apply_filler(FillerType.MEAN_FILLER)\n", |
| 212 | + "\n", |
| 213 | + "# (optional) Set scaller for data\n", |
| 214 | + "dataset.apply_scaler(ScalerType.MIN_MAX_SCALER)\n", |
| 215 | + "\n", |
| 216 | + "# (optional) Change sliding window setting\n", |
| 217 | + "dataset.set_sliding_window(sliding_window_size=24, sliding_window_prediction_size=1, sliding_window_step=1, set_shared_size=24)\n", |
| 218 | + "\n", |
| 219 | + "# (optional) Change batch sizes\n", |
| 220 | + "dataset.set_batch_sizes()\n", |
| 221 | + "\n", |
| 222 | + "# Display final config\n", |
| 223 | + "dataset.display_config()" |
| 224 | + ] |
| 225 | + }, |
| 226 | + { |
| 227 | + "cell_type": "markdown", |
| 228 | + "metadata": {}, |
| 229 | + "source": [ |
| 230 | + "### Using simple LSTM model" |
| 231 | + ] |
| 232 | + }, |
| 233 | + { |
| 234 | + "cell_type": "markdown", |
| 235 | + "metadata": {}, |
| 236 | + "source": [ |
| 237 | + "#### Creating class for model" |
| 238 | + ] |
| 239 | + }, |
| 240 | + { |
| 241 | + "cell_type": "code", |
| 242 | + "execution_count": 4, |
| 243 | + "metadata": {}, |
| 244 | + "outputs": [], |
| 245 | + "source": [ |
| 246 | + "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n", |
| 247 | + "\n", |
| 248 | + "class SimpleLSTM(nn.Module):\n", |
| 249 | + " def __init__(self, input_size=1, hidden_size=8, output_size=1):\n", |
| 250 | + " super(SimpleLSTM, self).__init__()\n", |
| 251 | + " self.lstm = nn.LSTM(input_size, hidden_size, batch_first=True)\n", |
| 252 | + " self.fc = nn.Linear(hidden_size, output_size)\n", |
| 253 | + "\n", |
| 254 | + " def forward(self, x):\n", |
| 255 | + " _, (h_n, _) = self.lstm(x) # h_n: (1, batch, hidden)\n", |
| 256 | + " out = self.fc(h_n[-1]) # (batch, output_size)\n", |
| 257 | + " return out.unsqueeze(1) # (batch, 1, output_size)\n", |
| 258 | + " \n", |
| 259 | + " def fit(self, train_dataloader, val_dataloader, n_epochs, device):\n", |
| 260 | + " self.train()\n", |
| 261 | + " criterion = nn.MSELoss()\n", |
| 262 | + " optimizer = optim.Adam(self.parameters(), lr=0.01)\n", |
| 263 | + " for epoch in range(n_epochs):\n", |
| 264 | + " train_losses = []\n", |
| 265 | + " val_losses = []\n", |
| 266 | + " for (batch_train, batch_val) in zip(train_dataloader, val_dataloader):\n", |
| 267 | + " batch_x, batch_y = batch_train\n", |
| 268 | + " batch_x = torch.tensor(batch_x, dtype=torch.float32).to(device)\n", |
| 269 | + " batch_y = torch.tensor(batch_y, dtype=torch.float32).to(device)\n", |
| 270 | + "\n", |
| 271 | + " optimizer.zero_grad()\n", |
| 272 | + " output = self(batch_x)\n", |
| 273 | + " loss = criterion(output, batch_y)\n", |
| 274 | + " loss.backward()\n", |
| 275 | + " optimizer.step()\n", |
| 276 | + " train_losses.append(loss.item())\n", |
| 277 | + "\n", |
| 278 | + " # validation loss\n", |
| 279 | + " with torch.no_grad():\n", |
| 280 | + " batch_x_val, batch_y_val = batch_val\n", |
| 281 | + " batch_x_val = torch.tensor(batch_x_val, dtype=torch.float32).to(device)\n", |
| 282 | + " batch_y_val = torch.tensor(batch_y_val, dtype=torch.float32).to(device)\n", |
| 283 | + " val_output = self(batch_x_val)\n", |
| 284 | + " val_loss = criterion(val_output, batch_y_val)\n", |
| 285 | + " val_losses.append(val_loss.item())\n", |
| 286 | + "\n", |
| 287 | + " \n", |
| 288 | + " def predict(self, test_dataloader, device):\n", |
| 289 | + " self.eval()\n", |
| 290 | + " all_preds = []\n", |
| 291 | + " all_targets = []\n", |
| 292 | + "\n", |
| 293 | + " with torch.no_grad():\n", |
| 294 | + " for batch_x_test, batch_y_test in test_dataloader:\n", |
| 295 | + " batch_x_test = torch.tensor(batch_x_test, dtype=torch.float32).to(device)\n", |
| 296 | + " batch_y_test = torch.tensor(batch_y_test, dtype=torch.float32).to(device)\n", |
| 297 | + "\n", |
| 298 | + " output = self(batch_x_test)\n", |
| 299 | + " all_preds.append(output.cpu().numpy().flatten())\n", |
| 300 | + " all_targets.append(batch_y_test.cpu().numpy().flatten())\n", |
| 301 | + "\n", |
| 302 | + " y_pred = np.concatenate(all_preds)\n", |
| 303 | + " y_true = np.concatenate(all_targets)\n", |
| 304 | + " return y_pred, y_true" |
| 305 | + ] |
| 306 | + }, |
| 307 | + { |
| 308 | + "cell_type": "markdown", |
| 309 | + "metadata": {}, |
| 310 | + "source": [ |
| 311 | + "#### Training model" |
| 312 | + ] |
| 313 | + }, |
| 314 | + { |
| 315 | + "cell_type": "code", |
| 316 | + "execution_count": 5, |
| 317 | + "metadata": {}, |
| 318 | + "outputs": [ |
| 319 | + { |
| 320 | + "name": "stderr", |
| 321 | + "output_type": "stream", |
| 322 | + "text": [ |
| 323 | + "100%|██████████| 283/283 [02:08<00:00, 2.21it/s]\n" |
| 324 | + ] |
| 325 | + } |
| 326 | + ], |
| 327 | + "source": [ |
| 328 | + "results = []\n", |
| 329 | + "for ts_id in tqdm.tqdm(dataset.get_data_about_set(about='train')['ts_ids']):\n", |
| 330 | + " model = SimpleLSTM().to(device)\n", |
| 331 | + " model.fit(\n", |
| 332 | + " dataset.get_train_dataloader(ts_id), \n", |
| 333 | + " dataset.get_val_dataloader(ts_id), \n", |
| 334 | + " n_epochs=5, \n", |
| 335 | + " device=device,\n", |
| 336 | + " )\n", |
| 337 | + " y_pred, y_true = model.predict(\n", |
| 338 | + " dataset.get_test_dataloader(ts_id), \n", |
| 339 | + " device=device,\n", |
| 340 | + " )\n", |
| 341 | + " \n", |
| 342 | + " rmse = mean_squared_error(y_true, y_pred)\n", |
| 343 | + " results.append(rmse)\n" |
| 344 | + ] |
| 345 | + }, |
| 346 | + { |
| 347 | + "cell_type": "markdown", |
| 348 | + "metadata": {}, |
| 349 | + "source": [ |
| 350 | + "#### Final prediction scores on test set" |
| 351 | + ] |
| 352 | + }, |
| 353 | + { |
| 354 | + "cell_type": "code", |
| 355 | + "execution_count": 6, |
| 356 | + "metadata": {}, |
| 357 | + "outputs": [ |
| 358 | + { |
| 359 | + "name": "stdout", |
| 360 | + "output_type": "stream", |
| 361 | + "text": [ |
| 362 | + "Mean RMSE: 0.082187\n", |
| 363 | + "Std RMSE: 0.146893\n" |
| 364 | + ] |
| 365 | + } |
| 366 | + ], |
| 367 | + "source": [ |
| 368 | + "print(f\"Mean RMSE: {np.mean(results):.6f}\")\n", |
| 369 | + "print(f\"Std RMSE: {np.std(results):.6f}\") " |
| 370 | + ] |
| 371 | + } |
| 372 | + ], |
| 373 | + "metadata": { |
| 374 | + "kernelspec": { |
| 375 | + "display_name": ".venv", |
| 376 | + "language": "python", |
| 377 | + "name": "python3" |
| 378 | + }, |
| 379 | + "language_info": { |
| 380 | + "codemirror_mode": { |
| 381 | + "name": "ipython", |
| 382 | + "version": 3 |
| 383 | + }, |
| 384 | + "file_extension": ".py", |
| 385 | + "mimetype": "text/x-python", |
| 386 | + "name": "python", |
| 387 | + "nbconvert_exporter": "python", |
| 388 | + "pygments_lexer": "ipython3", |
| 389 | + "version": "3.12.3" |
| 390 | + } |
| 391 | + }, |
| 392 | + "nbformat": 4, |
| 393 | + "nbformat_minor": 2 |
| 394 | +} |
0 commit comments