Skip to content

Commit 4cd496f

Browse files
committed
black
1 parent 73f360c commit 4cd496f

File tree

2 files changed

+20
-20
lines changed

2 files changed

+20
-20
lines changed

causal_testing/testing/estimators.py

Lines changed: 1 addition & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -209,9 +209,7 @@ def estimate_control_treatment(self, bootstrap_size=100) -> tuple[pd.Series, pd.
209209
)
210210
return (y.iloc[1], None), (y.iloc[0], None)
211211
except np.linalg.LinAlgError:
212-
logger.warning(
213-
"Singular matrix detected. Confidence intervals not available. Try with a larger data set"
214-
)
212+
logger.warning("Singular matrix detected. Confidence intervals not available. Try with a larger data set")
215213
return (y.iloc[1], None), (y.iloc[0], None)
216214

217215
# Delta method confidence intervals from

tests/testing_tests/test_estimators.py

Lines changed: 19 additions & 17 deletions
Original file line numberDiff line numberDiff line change
@@ -76,19 +76,21 @@ class TestLogisticRegressionEstimator(unittest.TestCase):
7676

7777
@classmethod
7878
def setUpClass(cls) -> None:
79-
cls.scarf_df = pd.DataFrame([
80-
{ 'length_in': 55, 'large_gauge': 1, 'color': 'orange', 'completed': 1 },
81-
{ 'length_in': 55, 'large_gauge': 0, 'color': 'orange', 'completed': 1 },
82-
{ 'length_in': 55, 'large_gauge': 0, 'color': 'brown', 'completed': 1 },
83-
{ 'length_in': 60, 'large_gauge': 0, 'color': 'brown', 'completed': 1 },
84-
{ 'length_in': 60, 'large_gauge': 0, 'color': 'grey', 'completed': 0 },
85-
{ 'length_in': 70, 'large_gauge': 0, 'color': 'grey', 'completed': 1 },
86-
{ 'length_in': 70, 'large_gauge': 0, 'color': 'orange', 'completed': 0 },
87-
{ 'length_in': 82, 'large_gauge': 1, 'color': 'grey', 'completed': 1 },
88-
{ 'length_in': 82, 'large_gauge': 0, 'color': 'brown', 'completed': 0 },
89-
{ 'length_in': 82, 'large_gauge': 0, 'color': 'orange', 'completed': 0 },
90-
{ 'length_in': 82, 'large_gauge': 1, 'color': 'brown', 'completed': 0 },
91-
])
79+
cls.scarf_df = pd.DataFrame(
80+
[
81+
{"length_in": 55, "large_gauge": 1, "color": "orange", "completed": 1},
82+
{"length_in": 55, "large_gauge": 0, "color": "orange", "completed": 1},
83+
{"length_in": 55, "large_gauge": 0, "color": "brown", "completed": 1},
84+
{"length_in": 60, "large_gauge": 0, "color": "brown", "completed": 1},
85+
{"length_in": 60, "large_gauge": 0, "color": "grey", "completed": 0},
86+
{"length_in": 70, "large_gauge": 0, "color": "grey", "completed": 1},
87+
{"length_in": 70, "large_gauge": 0, "color": "orange", "completed": 0},
88+
{"length_in": 82, "large_gauge": 1, "color": "grey", "completed": 1},
89+
{"length_in": 82, "large_gauge": 0, "color": "brown", "completed": 0},
90+
{"length_in": 82, "large_gauge": 0, "color": "orange", "completed": 0},
91+
{"length_in": 82, "large_gauge": 1, "color": "brown", "completed": 0},
92+
]
93+
)
9294

9395
def test_ate(self):
9496
df = self.scarf_df.copy()
@@ -110,7 +112,9 @@ def test_odds_ratio(self):
110112

111113
def test_ate_effect_modifiers(self):
112114
df = self.scarf_df.copy()
113-
logistic_regression_estimator = LogisticRegressionEstimator("length_in", 65, 55, set(), "completed", df, effect_modifiers={"large_gauge": 0})
115+
logistic_regression_estimator = LogisticRegressionEstimator(
116+
"length_in", 65, 55, set(), "completed", df, effect_modifiers={"large_gauge": 0}
117+
)
114118
ate, _ = logistic_regression_estimator.estimate_ate()
115119
self.assertEqual(round(ate, 4), -0.3388)
116120

@@ -371,9 +375,7 @@ def test_program_15_ate(self):
371375
"smokeintensity",
372376
"smokeyrs",
373377
}
374-
causal_forest = CausalForestEstimator(
375-
"qsmk", 1, 0, covariates, "wt82_71", df, {"smokeintensity": 40}
376-
)
378+
causal_forest = CausalForestEstimator("qsmk", 1, 0, covariates, "wt82_71", df, {"smokeintensity": 40})
377379
ate, _ = causal_forest.estimate_ate()
378380
self.assertGreater(round(ate, 1), 2.5)
379381
self.assertLess(round(ate, 1), 4.5)

0 commit comments

Comments
 (0)