@@ -167,7 +167,6 @@ def estimate_ate(self) -> tuple[float, list[float, float], float]:
167
167
:return: The average treatment effect and the 95% Wald confidence intervals.
168
168
"""
169
169
model = self ._run_linear_regression ()
170
- print (model .summary ())
171
170
# Create an empty individual for the control and treated
172
171
individuals = pd .DataFrame (1 , index = ['control' , 'treated' ], columns = model .params .index )
173
172
individuals .loc ['control' , list (self .treatment )] = self .control_values
@@ -257,7 +256,6 @@ def estimate_cates(self) -> tuple[float, list[float, float]]:
257
256
x [f"{ a } *{ b } " ] = x [a ] * x [b ]
258
257
259
258
model = self ._run_linear_regression ()
260
- print (model .summary ())
261
259
y = model .predict (x )
262
260
treatment_outcome = y .iloc [0 ]
263
261
control_outcome = y .iloc [1 ]
@@ -338,7 +336,6 @@ def estimate_ate(self) -> float:
338
336
model .fit (outcome_df , treatment_df , X = effect_modifier_df , W = confounders_df )
339
337
340
338
# Obtain the ATE and 95% confidence intervals
341
- print (dir (model ))
342
339
ate = model .ate (effect_modifier_df , T0 = self .control_values , T1 = self .treatment_values )
343
340
ate_interval = model .ate_interval (effect_modifier_df , T0 = self .control_values , T1 = self .treatment_values )
344
341
ci_low , ci_high = ate_interval [0 ], ate_interval [1 ]
0 commit comments