@@ -167,7 +167,6 @@ def estimate_ate(self) -> tuple[float, list[float, float], float]:
167167 :return: The average treatment effect and the 95% Wald confidence intervals.
168168 """
169169 model = self ._run_linear_regression ()
170- print (model .summary ())
171170 # Create an empty individual for the control and treated
172171 individuals = pd .DataFrame (1 , index = ['control' , 'treated' ], columns = model .params .index )
173172 individuals .loc ['control' , list (self .treatment )] = self .control_values
@@ -257,7 +256,6 @@ def estimate_cates(self) -> tuple[float, list[float, float]]:
257256 x [f"{ a } *{ b } " ] = x [a ] * x [b ]
258257
259258 model = self ._run_linear_regression ()
260- print (model .summary ())
261259 y = model .predict (x )
262260 treatment_outcome = y .iloc [0 ]
263261 control_outcome = y .iloc [1 ]
@@ -338,7 +336,6 @@ def estimate_ate(self) -> float:
338336 model .fit (outcome_df , treatment_df , X = effect_modifier_df , W = confounders_df )
339337
340338 # Obtain the ATE and 95% confidence intervals
341- print (dir (model ))
342339 ate = model .ate (effect_modifier_df , T0 = self .control_values , T1 = self .treatment_values )
343340 ate_interval = model .ate_interval (effect_modifier_df , T0 = self .control_values , T1 = self .treatment_values )
344341 ci_low , ci_high = ate_interval [0 ], ate_interval [1 ]
0 commit comments