@@ -52,7 +52,7 @@ def doubling_beta_CATE_on_csv(
52
52
53
53
# Read in the observational data, perform identification
54
54
past_execution_df = pd .read_csv (observational_data_path )
55
- data_collector , _ , causal_test_case , causal_specification = setup (observational_data_path )
55
+ data_collector , _ , causal_test_case , causal_specification = setup (past_execution_df )
56
56
57
57
linear_regression_estimator = LinearRegressionEstimator (
58
58
"beta" ,
@@ -218,7 +218,7 @@ def doubling_beta_CATEs(observational_data_path: str, simulate_counterfactual: b
218
218
age_contact_fig .savefig (outpath_base_str + "age_contact_executions.pdf" , format = "pdf" )
219
219
220
220
221
- def setup (observational_data_path ):
221
+ def setup (observational_data ):
222
222
# 1. Read in the Causal DAG
223
223
causal_dag = CausalDAG (f"{ ROOT } /dag.dot" )
224
224
@@ -263,7 +263,7 @@ def setup(observational_data_path):
263
263
)
264
264
265
265
# 7. Create a data collector
266
- data_collector = ObservationalDataCollector (scenario , pd . read_csv ( observational_data_path ) )
266
+ data_collector = ObservationalDataCollector (scenario , observational_data )
267
267
268
268
# 8. Obtain the minimal adjustment set for the base test case from the causal DAG
269
269
minimal_adjustment_set = causal_dag .identification (base_test_case )
0 commit comments