@@ -42,8 +42,8 @@ def __init__(
42
42
effect_modifiers : dict [Variable :Any ] = None ,
43
43
):
44
44
self .treatment = treatment
45
- self .treatment_values = treatment_value
46
- self .control_values = control_value
45
+ self .treatment_value = treatment_value
46
+ self .control_value = control_value
47
47
self .adjustment_set = adjustment_set
48
48
self .outcome = outcome
49
49
self .df = df
@@ -90,15 +90,15 @@ class LogisticRegressionEstimator(Estimator):
90
90
def __init__ (
91
91
self ,
92
92
treatment : tuple ,
93
- treatment_values : float ,
94
- control_values : float ,
93
+ treatment_value : float ,
94
+ control_value : float ,
95
95
adjustment_set : set ,
96
96
outcome : tuple ,
97
97
df : pd .DataFrame = None ,
98
98
effect_modifiers : dict [Variable :Any ] = None ,
99
99
intercept : int = 1 ,
100
100
):
101
- super ().__init__ (treatment , treatment_values , control_values , adjustment_set , outcome , df , effect_modifiers )
101
+ super ().__init__ (treatment , treatment_value , control_value , adjustment_set , outcome , df , effect_modifiers )
102
102
103
103
for term in self .effect_modifiers :
104
104
self .adjustment_set .add (term )
@@ -155,7 +155,7 @@ def estimate_control_treatment(self) -> tuple[pd.Series, pd.Series]:
155
155
self .model = model
156
156
157
157
x = pd .DataFrame ()
158
- x [self .treatment [0 ]] = [self .treatment_values , self .control_values ]
158
+ x [self .treatment [0 ]] = [self .treatment_value , self .control_value ]
159
159
x ["Intercept" ] = self .intercept
160
160
for k , v in self .effect_modifiers .items ():
161
161
x [k ] = v
@@ -212,16 +212,16 @@ class LinearRegressionEstimator(Estimator):
212
212
def __init__ (
213
213
self ,
214
214
treatment : tuple ,
215
- treatment_values : float ,
216
- control_values : float ,
215
+ treatment_value : float ,
216
+ control_value : float ,
217
217
adjustment_set : set ,
218
218
outcome : tuple ,
219
219
df : pd .DataFrame = None ,
220
220
effect_modifiers : dict [Variable :Any ] = None ,
221
221
product_terms : list [tuple [Variable , Variable ]] = None ,
222
222
intercept : int = 1 ,
223
223
):
224
- super ().__init__ (treatment , treatment_values , control_values , adjustment_set , outcome , df , effect_modifiers )
224
+ super ().__init__ (treatment , treatment_value , control_value , adjustment_set , outcome , df , effect_modifiers )
225
225
226
226
if product_terms is None :
227
227
product_terms = []
@@ -304,7 +304,7 @@ def estimate_unit_ate(self) -> float:
304
304
unit_effect = model .params [list (self .treatment )].values [0 ] # Unit effect is the coefficient of the treatment
305
305
[ci_low , ci_high ] = self ._get_confidence_intervals (model )
306
306
307
- return unit_effect * self .treatment_values - unit_effect * self .control_values , [ci_low , ci_high ]
307
+ return unit_effect * self .treatment_value - unit_effect * self .control_value , [ci_low , ci_high ]
308
308
309
309
def estimate_ate (self ) -> tuple [float , list [float , float ], float ]:
310
310
"""Estimate the average treatment effect of the treatment on the outcome. That is, the change in outcome caused
@@ -315,8 +315,8 @@ def estimate_ate(self) -> tuple[float, list[float, float], float]:
315
315
model = self ._run_linear_regression ()
316
316
# Create an empty individual for the control and treated
317
317
individuals = pd .DataFrame (1 , index = ["control" , "treated" ], columns = model .params .index )
318
- individuals .loc ["control" , list (self .treatment )] = self .control_values
319
- individuals .loc ["treated" , list (self .treatment )] = self .treatment_values
318
+ individuals .loc ["control" , list (self .treatment )] = self .control_value
319
+ individuals .loc ["treated" , list (self .treatment )] = self .treatment_value
320
320
# This is a temporary hack
321
321
for t in self .square_terms :
322
322
individuals [t + "^2" ] = individuals [t ] ** 2
@@ -338,7 +338,7 @@ def estimate_control_treatment(self) -> tuple[pd.Series, pd.Series]:
338
338
self .model = model
339
339
340
340
x = pd .DataFrame ()
341
- x [self .treatment [0 ]] = [self .treatment_values , self .control_values ]
341
+ x [self .treatment [0 ]] = [self .treatment_value , self .control_value ]
342
342
x ["Intercept" ] = self .intercept
343
343
for k , v in self .effect_modifiers .items ():
344
344
x [k ] = v
@@ -389,7 +389,7 @@ def estimate_cates(self) -> tuple[float, list[float, float]]:
389
389
self .effect_modifiers
390
390
), f"Must have at least one effect modifier to compute CATE - { self .effect_modifiers } ."
391
391
x = pd .DataFrame ()
392
- x [self .treatment [0 ]] = [self .treatment_values , self .control_values ]
392
+ x [self .treatment [0 ]] = [self .treatment_value , self .control_value ]
393
393
x ["Intercept" ] = self .intercept
394
394
for k , v in self .effect_modifiers .items ():
395
395
self .adjustment_set .add (k )
@@ -485,8 +485,8 @@ def estimate_ate(self) -> float:
485
485
model .fit (outcome_df , treatment_df , X = effect_modifier_df , W = confounders_df )
486
486
487
487
# Obtain the ATE and 95% confidence intervals
488
- ate = model .ate (effect_modifier_df , T0 = self .control_values , T1 = self .treatment_values )
489
- ate_interval = model .ate_interval (effect_modifier_df , T0 = self .control_values , T1 = self .treatment_values )
488
+ ate = model .ate (effect_modifier_df , T0 = self .control_value , T1 = self .treatment_value )
489
+ ate_interval = model .ate_interval (effect_modifier_df , T0 = self .control_value , T1 = self .treatment_value )
490
490
ci_low , ci_high = ate_interval [0 ], ate_interval [1 ]
491
491
return ate , [ci_low , ci_high ]
492
492
@@ -525,9 +525,9 @@ def estimate_cates(self) -> pd.DataFrame:
525
525
model .fit (outcome_df , treatment_df , X = effect_modifier_df , W = confounders_df )
526
526
527
527
# Obtain CATES and confidence intervals
528
- conditional_ates = model .effect (effect_modifier_df , T0 = self .control_values , T1 = self .treatment_values ).flatten ()
528
+ conditional_ates = model .effect (effect_modifier_df , T0 = self .control_value , T1 = self .treatment_value ).flatten ()
529
529
[ci_low , ci_high ] = model .effect_interval (
530
- effect_modifier_df , T0 = self .control_values , T1 = self .treatment_values , alpha = 0.05
530
+ effect_modifier_df , T0 = self .control_value , T1 = self .treatment_value , alpha = 0.05
531
531
)
532
532
533
533
# Merge results into a dataframe (CATE, confidence intervals, and effect modifier values)
0 commit comments