@@ -33,8 +33,8 @@ def interpolate_ev(
3333 x_test ,
3434 x_train ,
3535 y_train ,
36- x_scale = None ,
37- y_scale = None ,
36+ logx = False ,
37+ logy = False ,
3838 x_threshold = None ,
3939 y_threshold = None ,
4040 y_asymptotic = np .nan ,
@@ -52,10 +52,10 @@ def interpolate_ev(
5252 1-D array of x-values of training data
5353 y_train : array_like
5454 1-D array of y-values of training data
55- x_scale : str , optional
56- If set to 'log' , x_values are convert to log scale. Defaults to None .
57- y_scale : str , optional
58- If set to 'log' , x_values are convert to log scale. Defaults to None .
55+ logx : bool , optional
56+ If set to True , x_values are convert to log scale. Defaults to False .
57+ logy : bool , optional
58+ If set to True , x_values are convert to log scale. Defaults to False .
5959 x_threshold : float, optional
6060 Lower threshold to filter x_train. Defaults to None.
6161 y_threshold : float, optional
@@ -79,24 +79,24 @@ def interpolate_ev(
7979
8080 # preprocess interpolation data
8181 x_test , x_train , y_train = _preprocess_interpolation_data (
82- x_test , x_train , y_train , x_scale , y_scale , x_threshold , y_threshold
82+ x_test , x_train , y_train , logx , logy , x_threshold , y_threshold
8383 )
8484
8585 # handle case of small training data sizes
8686 if x_train .size < 2 :
8787 LOGGER .warning ('Data is being extrapolated.' )
88- return _interpolate_small_input (x_test , x_train , y_train , y_scale , y_asymptotic )
88+ return _interpolate_small_input (x_test , x_train , y_train , logy , y_asymptotic )
8989
9090 # calculate fill values
9191 if isinstance (fill_value , tuple ):
9292 if fill_value [0 ] == 'maximum' :
9393 fill_value = (
9494 np .max (y_train ),
95- np .log10 (fill_value [1 ]) if y_scale == 'log' else fill_value [1 ]
95+ np .log10 (fill_value [1 ]) if logy else fill_value [1 ]
9696 )
97- elif y_scale == 'log' :
97+ elif logy :
9898 fill_value = tuple (np .log10 (fill_value ))
99- elif isinstance (fill_value , (float , int )) and y_scale == 'log' :
99+ elif isinstance (fill_value , (float , int )) and logy :
100100 fill_value = np .log10 (fill_value )
101101
102102 # warn if data is being extrapolated
@@ -111,7 +111,7 @@ def interpolate_ev(
111111 y_test = interpolation (x_test )
112112
113113 # adapt output scale
114- if y_scale == 'log' :
114+ if logy :
115115 y_test = np .power (10. , y_test )
116116 return y_test
117117
@@ -170,8 +170,8 @@ def _preprocess_interpolation_data(
170170 x_test ,
171171 x_train ,
172172 y_train ,
173- x_scale ,
174- y_scale ,
173+ logx ,
174+ logy ,
175175 x_threshold ,
176176 y_threshold
177177 ):
@@ -201,23 +201,23 @@ def _preprocess_interpolation_data(
201201 y_train = y_train [y_th ]
202202
203203 # convert to log scale
204- if x_scale == 'log' :
204+ if logx :
205205 x_train , x_test = np .log10 (x_train ), np .log10 (x_test )
206- if y_scale == 'log' :
206+ if logy :
207207 y_train = np .log10 (y_train )
208208
209209 return (x_test , x_train , y_train )
210210
211- def _interpolate_small_input (x_test , x_train , y_train , y_scale , y_asymptotic ):
211+ def _interpolate_small_input (x_test , x_train , y_train , logy , y_asymptotic ):
212212 """
213213 helper function to handle if interpolation data is small (empty or one point)
214214 """
215215 # return y_asymptotic if x_train and y_train empty
216216 if x_train .size == 0 :
217217 return np .full_like (x_test , y_asymptotic )
218218
219- # reconvert logarithmic y_scale to normal y_train
220- if y_scale == 'log' :
219+ # reconvert logarithmic y_train to original y_train
220+ if logy :
221221 y_train = np .power (10. , y_train )
222222
223223 # if only one (x_train, y_train), return stepfunction with
0 commit comments