@@ -65,11 +65,11 @@ def interpolate_ev(
6565 x_train.size < 2. Defaults to np.nan.
6666 fill_value : tuple, float, str
6767 fill values to use when x_test outside of range of x_train.
68- If set to "extrapolate", values will be extrapolated. If set to a float, value will
69- be used on both sides. If set to tuple, left value will be used for left side and
70- right value will be used for right side. If tuple and left value is "maximum", the maximum
71- of the cummulative frequencies will be used to compute exceedance intensities on the left.
72- Defaults to np.nan
68+ If set to "extrapolate", values will be extrapolated. If set to a float, value will
69+ be used on both sides. If set to tuple, left value will be used for left side and
70+ right value will be used for right side. If tuple and left value is "maximum",
71+ the maximum of the cummulative frequencies will be used to compute exceedance
72+ intensities on the left. Defaults to np.nan
7373
7474 Returns
7575 -------
@@ -104,16 +104,16 @@ def interpolate_ev(
104104 fill_value = tuple (np .log10 (fill_value ))
105105 elif isinstance (fill_value , (float , int )) and y_scale == 'log' :
106106 fill_value = np .log10 (fill_value )
107-
108-
107+
109108 # warn if data is being extrapolated
110109 if (
111110 fill_value == 'extrapolate' and
112111 ((np .min (x_test ) < np .min (x_train )) or (np .max (x_test ) > np .max (x_train )))
113112 ):
114113 LOGGER .warning ('Data is being extrapolated.' )
115114
116- interpolation = interpolate .interp1d (x_train , y_train , fill_value = fill_value , bounds_error = False )
115+ interpolation = interpolate .interp1d (
116+ x_train , y_train , fill_value = fill_value , bounds_error = False )
117117 y_test = interpolation (x_test )
118118
119119 # adapt output scale
@@ -162,7 +162,7 @@ def stepfunction_ev(
162162 # handle case of small training data sizes
163163 if x_train .size < 2 :
164164 return _interpolate_small_input (x_test , x_train , y_train , None , y_asymptotic )
165-
165+
166166 # find indeces of x_test if sorted into x_train
167167 if not all (sorted (x_train ) == x_train ):
168168 raise ValueError ('Input array x_train must be sorted in ascending order.' )
@@ -261,7 +261,8 @@ def group_frequency(frequency, value, n_sig_dig=2):
261261 if not all (sorted (value ) == value ):
262262 raise ValueError ('Value array must be sorted in ascending order.' )
263263 # add frequency for equal value
264- value , start_indices = np .unique (sig_dig_list (value , n_sig_dig = n_sig_dig ), return_index = True )
264+ value , start_indices = np .unique (
265+ sig_dig_list (value , n_sig_dig = n_sig_dig ), return_index = True )
265266 start_indices = np .insert (start_indices , len (value ), len (frequency ))
266267 frequency = np .array ([
267268 sum (frequency [start_indices [i ]:start_indices [i + 1 ]])
0 commit comments