@@ -3010,7 +3010,7 @@ def compute_track_density(
30103010
30113011 Parameters:
30123012 ----------
3013- tc_track: TCT track object
3013+ tc_track: TCTracks object
30143014 track object containing a list of all tracks
30153015 res: int (optional), default: 5°
30163016 resolution in degrees of the grid bins in which the density will be computed
@@ -3021,7 +3021,7 @@ def compute_track_density(
30213021 norm: str (optional), default: None
30223022 If None the function returns the number of samples in each bin. If True, it normalize the
30233023 bin count as specified: if norm = area -> normalize by gird cell area. If norm = sum ->
3024- normalize by the total sum of each bin .
3024+ normalize by the total sum across all bins .
30253025 filter_tracks: bool (optional) default: True
30263026 If True the track density is computed as the number of different tracks crossing a grid
30273027 cell. If False, the track density takes into account how long the track stayed in each
@@ -3034,17 +3034,17 @@ def compute_track_density(
30343034 Returns:
30353035 -------
30363036 hist_count: np.ndarray
3037- 2D matrix containing the the absolute count per gridd cell of track point or the normalized
3037+ 2D matrix containing the the absolute count per grid cell of track point or the normalized
30383038 number of track points, depending on the norm parameter.
30393039 lat_bins: np.ndarray
3040- latitude bins in which the point where counted
3040+ latitude bins in which the point were counted
30413041 lon_bins: np.ndarray
3042- laongitude bins in which the point where counted
3042+ longitude bins in which the point were counted
30433043
30443044 Example:
30453045 --------
30463046 >>> tc_tracks = TCTrack.from_ibtracs_netcdf("path_to_file")
3047- >>> tc_tracks.equal_timestep(time_steph_h = 1)
3047+ >>> tc_tracks.equal_timestep(time_step_h = 1)
30483048 >>> hist_count, *_ = compute_track_density(tc_track = tc_tracks, res = 1)
30493049 >>> ax = plot_track_density(hist_count)
30503050
0 commit comments