|
29 | 29 |
|
30 | 30 | from climada.engine.impact_calc import ImpactCalc |
31 | 31 | from climada.entity.disc_rates.base import DiscRates |
| 32 | +from climada.entity.impact_funcs.base import ImpactFunc |
| 33 | +from climada.entity.impact_funcs.impact_func_set import ImpactFuncSet |
32 | 34 | from climada.test.reusable import ( |
33 | 35 | CATEGORIES, |
34 | 36 | reusable_minimal_exposures, |
|
40 | 42 | from climada.trajectories.constants import ( |
41 | 43 | AAI_METRIC_NAME, |
42 | 44 | AAI_PER_GROUP_METRIC_NAME, |
| 45 | + CONTRIBUTION_BASE_RISK_NAME, |
| 46 | + CONTRIBUTION_EXPOSURE_NAME, |
| 47 | + CONTRIBUTION_HAZARD_NAME, |
| 48 | + CONTRIBUTION_INTERACTION_TERM_NAME, |
| 49 | + CONTRIBUTION_VULNERABILITY_NAME, |
43 | 50 | COORD_ID_COL_NAME, |
44 | 51 | DATE_COL_NAME, |
45 | 52 | EAI_METRIC_NAME, |
@@ -520,3 +527,117 @@ def test_interp_trajectory_risk_disc_rate(self): |
520 | 527 | check_dtype=False, |
521 | 528 | check_categorical=False, |
522 | 529 | ) |
| 530 | + |
| 531 | + def test_interp_trajectory_risk_contributions(self): |
| 532 | + interp_traj = InterpolatedRiskTrajectory( |
| 533 | + [self.base_snapshot, self.future_snapshot] |
| 534 | + ) |
| 535 | + expected = pd.DataFrame.from_dict( |
| 536 | + # fmt: off |
| 537 | + {'index': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], |
| 538 | + 'columns': [DATE_COL_NAME, GROUP_COL_NAME, MEASURE_COL_NAME, METRIC_COL_NAME, UNIT_COL_NAME, RISK_COL_NAME,], |
| 539 | + 'data': [ |
| 540 | + [pd.Period(str(2020)), 'All', NO_MEASURE_VALUE, CONTRIBUTION_BASE_RISK_NAME, 'USD', 20.0], |
| 541 | + [pd.Period(str(2021)), 'All', NO_MEASURE_VALUE, CONTRIBUTION_BASE_RISK_NAME, 'USD', 20.0], |
| 542 | + [pd.Period(str(2022)), 'All', NO_MEASURE_VALUE, CONTRIBUTION_BASE_RISK_NAME, 'USD', 20.0], |
| 543 | + [pd.Period(str(2020)), 'All', NO_MEASURE_VALUE, CONTRIBUTION_EXPOSURE_NAME, 'USD', 0.0], |
| 544 | + [pd.Period(str(2021)), 'All', NO_MEASURE_VALUE, CONTRIBUTION_EXPOSURE_NAME, 'USD', 50.0], |
| 545 | + [pd.Period(str(2022)), 'All', NO_MEASURE_VALUE, CONTRIBUTION_EXPOSURE_NAME, 'USD', 100.0], |
| 546 | + [pd.Period(str(2020)), 'All', NO_MEASURE_VALUE, CONTRIBUTION_HAZARD_NAME, 'USD', 0.0], |
| 547 | + [pd.Period(str(2021)), 'All', NO_MEASURE_VALUE, CONTRIBUTION_HAZARD_NAME, 'USD', 10.0], |
| 548 | + [pd.Period(str(2022)), 'All', NO_MEASURE_VALUE, CONTRIBUTION_HAZARD_NAME, 'USD', 20.0], |
| 549 | + [pd.Period(str(2020)), 'All', NO_MEASURE_VALUE, CONTRIBUTION_VULNERABILITY_NAME, 'USD', 0.0], |
| 550 | + [pd.Period(str(2021)), 'All', NO_MEASURE_VALUE, CONTRIBUTION_VULNERABILITY_NAME, 'USD', 0.0], |
| 551 | + [pd.Period(str(2022)), 'All', NO_MEASURE_VALUE, CONTRIBUTION_VULNERABILITY_NAME, 'USD', 0.0], |
| 552 | + [pd.Period(str(2020)), 'All', NO_MEASURE_VALUE, CONTRIBUTION_INTERACTION_TERM_NAME, 'USD', 0.0], |
| 553 | + [pd.Period(str(2021)), 'All', NO_MEASURE_VALUE, CONTRIBUTION_INTERACTION_TERM_NAME, 'USD', 25.0], |
| 554 | + [pd.Period(str(2022)), 'All', NO_MEASURE_VALUE, CONTRIBUTION_INTERACTION_TERM_NAME, 'USD', 100.0]], |
| 555 | + 'index_names': [None], |
| 556 | + 'column_names': [None]}, |
| 557 | + # fmt: on |
| 558 | + orient="tight", |
| 559 | + ) |
| 560 | + pd.testing.assert_frame_equal( |
| 561 | + interp_traj.risk_contributions_metrics(), |
| 562 | + expected, |
| 563 | + check_dtype=False, |
| 564 | + check_categorical=False, |
| 565 | + ) |
| 566 | + |
| 567 | + # With changing vulnerability |
| 568 | + hazard = reusable_minimal_hazard() |
| 569 | + impfset1 = ImpactFuncSet( |
| 570 | + [ |
| 571 | + ImpactFunc( |
| 572 | + haz_type=hazard.haz_type, |
| 573 | + intensity_unit=hazard.units, |
| 574 | + name="linear", |
| 575 | + intensity=np.array([0, 100 / 2, 100]), |
| 576 | + mdd=np.array([0, 0.5, 1]), |
| 577 | + paa=np.array([1, 1, 1]), |
| 578 | + id=1, |
| 579 | + ), |
| 580 | + ] |
| 581 | + ) |
| 582 | + impfset2 = ImpactFuncSet( |
| 583 | + [ |
| 584 | + ImpactFunc( |
| 585 | + haz_type=hazard.haz_type, |
| 586 | + intensity_unit=hazard.units, |
| 587 | + name="linear-half-paa", |
| 588 | + intensity=np.array([0, 100 / 2, 100]), |
| 589 | + mdd=np.array([0, 0.5, 1]), |
| 590 | + paa=np.array([0.5, 0.5, 0.5]), |
| 591 | + id=1, |
| 592 | + ) |
| 593 | + ] |
| 594 | + ) |
| 595 | + base_snapshot = Snapshot( |
| 596 | + exposure=reusable_minimal_exposures(), |
| 597 | + hazard=hazard, |
| 598 | + impfset=impfset1, |
| 599 | + date=2020, |
| 600 | + ) |
| 601 | + future_snapshot = Snapshot( |
| 602 | + exposure=reusable_minimal_exposures( |
| 603 | + increase_value_factor=self.EXP_INCREASE_VALUE_FACTOR, |
| 604 | + ), |
| 605 | + hazard=reusable_minimal_hazard( |
| 606 | + intensity_factor=self.HAZ_INCREASE_INTENSITY_FACTOR |
| 607 | + ), |
| 608 | + impfset=impfset2, |
| 609 | + date=2022, |
| 610 | + ) |
| 611 | + |
| 612 | + interp_traj = InterpolatedRiskTrajectory([base_snapshot, future_snapshot]) |
| 613 | + expected = pd.DataFrame.from_dict( |
| 614 | + # fmt: off |
| 615 | + {'index': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], |
| 616 | + 'columns': [DATE_COL_NAME, GROUP_COL_NAME, MEASURE_COL_NAME, METRIC_COL_NAME, UNIT_COL_NAME, RISK_COL_NAME,], |
| 617 | + 'data': [ |
| 618 | + [pd.Period(str(2020)), 'All', NO_MEASURE_VALUE, CONTRIBUTION_BASE_RISK_NAME, 'USD', 20.0], |
| 619 | + [pd.Period(str(2021)), 'All', NO_MEASURE_VALUE, CONTRIBUTION_BASE_RISK_NAME, 'USD', 20.0], |
| 620 | + [pd.Period(str(2022)), 'All', NO_MEASURE_VALUE, CONTRIBUTION_BASE_RISK_NAME, 'USD', 20.0], |
| 621 | + [pd.Period(str(2020)), 'All', NO_MEASURE_VALUE, CONTRIBUTION_EXPOSURE_NAME, 'USD', 0.0], |
| 622 | + [pd.Period(str(2021)), 'All', NO_MEASURE_VALUE, CONTRIBUTION_EXPOSURE_NAME, 'USD', 50.0], |
| 623 | + [pd.Period(str(2022)), 'All', NO_MEASURE_VALUE, CONTRIBUTION_EXPOSURE_NAME, 'USD', 100.0], |
| 624 | + [pd.Period(str(2020)), 'All', NO_MEASURE_VALUE, CONTRIBUTION_HAZARD_NAME, 'USD', 0.0], |
| 625 | + [pd.Period(str(2021)), 'All', NO_MEASURE_VALUE, CONTRIBUTION_HAZARD_NAME, 'USD', 10.0], |
| 626 | + [pd.Period(str(2022)), 'All', NO_MEASURE_VALUE, CONTRIBUTION_HAZARD_NAME, 'USD', 20.0], |
| 627 | + [pd.Period(str(2020)), 'All', NO_MEASURE_VALUE, CONTRIBUTION_VULNERABILITY_NAME, 'USD', 0.0], |
| 628 | + [pd.Period(str(2021)), 'All', NO_MEASURE_VALUE, CONTRIBUTION_VULNERABILITY_NAME, 'USD', -5.0], |
| 629 | + [pd.Period(str(2022)), 'All', NO_MEASURE_VALUE, CONTRIBUTION_VULNERABILITY_NAME, 'USD', -10.0], |
| 630 | + [pd.Period(str(2020)), 'All', NO_MEASURE_VALUE, CONTRIBUTION_INTERACTION_TERM_NAME, 'USD', 0.0], |
| 631 | + [pd.Period(str(2021)), 'All', NO_MEASURE_VALUE, CONTRIBUTION_INTERACTION_TERM_NAME, 'USD', 3.75], |
| 632 | + [pd.Period(str(2022)), 'All', NO_MEASURE_VALUE, CONTRIBUTION_INTERACTION_TERM_NAME, 'USD', -10.0]], |
| 633 | + 'index_names': [None], |
| 634 | + 'column_names': [None]}, |
| 635 | + # fmt: on |
| 636 | + orient="tight", |
| 637 | + ) |
| 638 | + pd.testing.assert_frame_equal( |
| 639 | + interp_traj.risk_contributions_metrics(), |
| 640 | + expected, |
| 641 | + check_dtype=False, |
| 642 | + check_categorical=False, |
| 643 | + ) |
0 commit comments