|
19 | 19 |
|
20 | 20 | """ |
21 | 21 |
|
| 22 | +import copy |
| 23 | +from itertools import groupby |
22 | 24 | from unittest import TestCase |
23 | 25 |
|
| 26 | +import geopandas as gpd |
24 | 27 | import numpy as np |
25 | 28 | import pandas as pd |
26 | 29 |
|
|
33 | 36 | reusable_minimal_impfset, |
34 | 37 | reusable_snapshot, |
35 | 38 | ) |
36 | | -from climada.trajectories import StaticRiskTrajectory |
| 39 | +from climada.trajectories import InterpolatedRiskTrajectory, StaticRiskTrajectory |
37 | 40 | from climada.trajectories.constants import ( |
38 | 41 | AAI_METRIC_NAME, |
| 42 | + AAI_PER_GROUP_METRIC_NAME, |
| 43 | + CONTRIBUTION_BASE_RISK_NAME, |
| 44 | + CONTRIBUTION_EXPOSURE_NAME, |
| 45 | + CONTRIBUTION_HAZARD_NAME, |
| 46 | + CONTRIBUTION_INTERACTION_TERM_NAME, |
| 47 | + CONTRIBUTION_VULNERABILITY_NAME, |
| 48 | + COORD_ID_COL_NAME, |
39 | 49 | DATE_COL_NAME, |
| 50 | + EAI_METRIC_NAME, |
40 | 51 | GROUP_COL_NAME, |
41 | 52 | MEASURE_COL_NAME, |
42 | 53 | METRIC_COL_NAME, |
43 | 54 | NO_MEASURE_VALUE, |
| 55 | + PERIOD_COL_NAME, |
| 56 | + RETURN_PERIOD_METRIC_NAME, |
44 | 57 | RISK_COL_NAME, |
| 58 | + RP_VALUE_PREFIX, |
45 | 59 | UNIT_COL_NAME, |
46 | 60 | ) |
47 | 61 | from climada.trajectories.snapshot import Snapshot |
@@ -276,3 +290,352 @@ def test_static_trajectory_risk_disc_rate(self): |
276 | 290 | check_dtype=False, |
277 | 291 | check_categorical=False, |
278 | 292 | ) |
| 293 | + |
| 294 | + |
| 295 | +class TestInterpolatedTrajectory(TestCase): |
| 296 | + PRESENT_DATE = 2020 |
| 297 | + HAZ_INCREASE_INTENSITY_FACTOR = 2 |
| 298 | + EXP_INCREASE_VALUE_FACTOR = 6 |
| 299 | + FUTURE_DATE = 2022 |
| 300 | + |
| 301 | + def setUp(self) -> None: |
| 302 | + self.base_snapshot = reusable_snapshot(date=self.PRESENT_DATE) |
| 303 | + self.future_snapshot = reusable_snapshot( |
| 304 | + hazard_intensity_increase_factor=self.HAZ_INCREASE_INTENSITY_FACTOR, |
| 305 | + exposure_value_increase_factor=self.EXP_INCREASE_VALUE_FACTOR, |
| 306 | + date=self.FUTURE_DATE, |
| 307 | + ) |
| 308 | + |
| 309 | + self.expected_base_imp = ImpactCalc( |
| 310 | + **self.base_snapshot.impact_calc_data |
| 311 | + ).impact() |
| 312 | + self.expected_future_imp = ImpactCalc( |
| 313 | + **self.future_snapshot.impact_calc_data |
| 314 | + ).impact() |
| 315 | + # self.group_vector = self.base_snapshot.exposure.gdf[GROUP_ID_COL_NAME] |
| 316 | + self.expected_base_return_period_impacts = { |
| 317 | + rp: imp |
| 318 | + for rp, imp in zip( |
| 319 | + self.expected_base_imp.calc_freq_curve(DEFAULT_RP).return_per, |
| 320 | + self.expected_base_imp.calc_freq_curve(DEFAULT_RP).impact, |
| 321 | + ) |
| 322 | + } |
| 323 | + self.expected_future_return_period_impacts = { |
| 324 | + rp: imp |
| 325 | + for rp, imp in zip( |
| 326 | + self.expected_future_imp.calc_freq_curve(DEFAULT_RP).return_per, |
| 327 | + self.expected_future_imp.calc_freq_curve(DEFAULT_RP).impact, |
| 328 | + ) |
| 329 | + } |
| 330 | + |
| 331 | + # fmt: off |
| 332 | + self.expected_interp_metrics = pd.DataFrame.from_dict( |
| 333 | + {'index': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], |
| 334 | + 'columns': [DATE_COL_NAME, GROUP_COL_NAME, MEASURE_COL_NAME, METRIC_COL_NAME, UNIT_COL_NAME, RISK_COL_NAME], |
| 335 | + 'data': [[ pd.Period(2020), 'All',NO_MEASURE_VALUE, 'aai', 'USD', 20.0], |
| 336 | + [ pd.Period(2021), 'All',NO_MEASURE_VALUE, 'aai', 'USD', 105.0], # This should indeed not be 240+20 / 2 (because we interpolate each contributor separately) |
| 337 | + [ pd.Period(2022), 'All',NO_MEASURE_VALUE, 'aai', 'USD', 240.0], |
| 338 | + [ pd.Period(2020), 'All',NO_MEASURE_VALUE, 'rp_20', 'USD', 0.0], |
| 339 | + [ pd.Period(2021), 'All',NO_MEASURE_VALUE, 'rp_20', 'USD', 0.0], |
| 340 | + [ pd.Period(2022), 'All',NO_MEASURE_VALUE, 'rp_20', 'USD', 0.0], |
| 341 | + [ pd.Period(2020), 'All',NO_MEASURE_VALUE, 'rp_50', 'USD', 500.0], |
| 342 | + [ pd.Period(2021), 'All',NO_MEASURE_VALUE, 'rp_50', 'USD', 2625.0], |
| 343 | + [ pd.Period(2022), 'All',NO_MEASURE_VALUE, 'rp_50', 'USD', 6000.0], |
| 344 | + [ pd.Period(2020), 'All',NO_MEASURE_VALUE, 'rp_100', 'USD', 1500.0], |
| 345 | + [ pd.Period(2021), 'All',NO_MEASURE_VALUE, 'rp_100', 'USD', 7875.0], |
| 346 | + [ pd.Period(2022), 'All',NO_MEASURE_VALUE, 'rp_100', 'USD', 18000.0]], |
| 347 | + 'index_names': [None], |
| 348 | + 'column_names': [None]}, |
| 349 | + orient="tight" |
| 350 | + ) |
| 351 | + |
| 352 | + self.expected_period_metrics = pd.DataFrame.from_dict( |
| 353 | + {'index': [0, 1, 2, 3], |
| 354 | + 'columns': [PERIOD_COL_NAME, GROUP_COL_NAME, MEASURE_COL_NAME, METRIC_COL_NAME, UNIT_COL_NAME, RISK_COL_NAME], |
| 355 | + 'data': [[f"{self.PRESENT_DATE} to {self.FUTURE_DATE}", 'All', NO_MEASURE_VALUE, 'aai', 'USD', 365.0/3], |
| 356 | + [f"{self.PRESENT_DATE} to {self.FUTURE_DATE}", 'All', NO_MEASURE_VALUE, 'rp_100', 'USD', 27375/3], |
| 357 | + [f"{self.PRESENT_DATE} to {self.FUTURE_DATE}", 'All', NO_MEASURE_VALUE, 'rp_20', 'USD', 0.0], |
| 358 | + [f"{self.PRESENT_DATE} to {self.FUTURE_DATE}", 'All', NO_MEASURE_VALUE, 'rp_50', 'USD', 9125.0/3]], |
| 359 | + 'index_names': [None], |
| 360 | + 'column_names': [None]}, |
| 361 | + orient="tight" |
| 362 | + ) |
| 363 | + # fmt: on |
| 364 | + |
| 365 | + def test_interp_trajectory(self): |
| 366 | + interp_traj = InterpolatedRiskTrajectory( |
| 367 | + [self.base_snapshot, self.future_snapshot] |
| 368 | + ) |
| 369 | + pd.testing.assert_frame_equal( |
| 370 | + interp_traj.per_date_risk_metrics(), |
| 371 | + self.expected_interp_metrics, |
| 372 | + check_dtype=False, |
| 373 | + check_categorical=False, |
| 374 | + ) |
| 375 | + pd.testing.assert_frame_equal( |
| 376 | + interp_traj.per_period_risk_metrics(), |
| 377 | + self.expected_period_metrics, |
| 378 | + check_dtype=False, |
| 379 | + check_categorical=False, |
| 380 | + ) |
| 381 | + |
| 382 | + def test_interp_trajectory_with_group(self): |
| 383 | + exp0 = reusable_minimal_exposures(group_id=CATEGORIES) |
| 384 | + exp1 = reusable_minimal_exposures( |
| 385 | + group_id=CATEGORIES, increase_value_factor=self.EXP_INCREASE_VALUE_FACTOR |
| 386 | + ) |
| 387 | + snap0 = Snapshot( |
| 388 | + exposure=exp0, |
| 389 | + hazard=reusable_minimal_hazard(), |
| 390 | + impfset=reusable_minimal_impfset(), |
| 391 | + date=self.PRESENT_DATE, |
| 392 | + ) |
| 393 | + snap1 = Snapshot( |
| 394 | + exposure=exp1, |
| 395 | + hazard=reusable_minimal_hazard( |
| 396 | + intensity_factor=self.HAZ_INCREASE_INTENSITY_FACTOR |
| 397 | + ), |
| 398 | + impfset=reusable_minimal_impfset(), |
| 399 | + date=self.FUTURE_DATE, |
| 400 | + ) |
| 401 | + |
| 402 | + expected_interp_metrics = pd.concat( |
| 403 | + [ |
| 404 | + self.expected_interp_metrics, |
| 405 | + # fmt: off |
| 406 | + pd.DataFrame.from_dict( |
| 407 | + { |
| 408 | + "index": [0, 1, 2, 3, 4, 5], |
| 409 | + "columns": [DATE_COL_NAME, GROUP_COL_NAME, MEASURE_COL_NAME, METRIC_COL_NAME, UNIT_COL_NAME, RISK_COL_NAME,], |
| 410 | + "data": [ |
| 411 | + [pd.Period("2020"), 1, NO_MEASURE_VALUE, AAI_METRIC_NAME, "USD", 15.0,], |
| 412 | + [pd.Period("2020"), 2, NO_MEASURE_VALUE, AAI_METRIC_NAME, "USD", 5.0,], |
| 413 | + [pd.Period("2021"), 1, NO_MEASURE_VALUE, AAI_METRIC_NAME, "USD", 78.75,], |
| 414 | + [pd.Period("2021"), 2, NO_MEASURE_VALUE, AAI_METRIC_NAME, "USD", 26.25,], |
| 415 | + [pd.Period("2022"), 1, NO_MEASURE_VALUE, AAI_METRIC_NAME, "USD", 180.0,], |
| 416 | + [pd.Period("2022"), 2, NO_MEASURE_VALUE, AAI_METRIC_NAME, "USD", 60.0,], |
| 417 | + ], |
| 418 | + "index_names": [None], |
| 419 | + "column_names": [None], |
| 420 | + }, |
| 421 | + orient="tight", |
| 422 | + ), |
| 423 | + # fmt: on |
| 424 | + ], |
| 425 | + ignore_index=True, |
| 426 | + ) |
| 427 | + |
| 428 | + interp_traj = InterpolatedRiskTrajectory([snap0, snap1]) |
| 429 | + pd.testing.assert_frame_equal( |
| 430 | + interp_traj.per_date_risk_metrics(), |
| 431 | + expected_interp_metrics, |
| 432 | + check_dtype=False, |
| 433 | + check_categorical=False, |
| 434 | + ) |
| 435 | + |
| 436 | + def test_interp_trajectory_change_rp(self): |
| 437 | + interp_traj = InterpolatedRiskTrajectory( |
| 438 | + [self.base_snapshot, self.future_snapshot], return_periods=[10, 60, 1000] |
| 439 | + ) |
| 440 | + expected = pd.DataFrame.from_dict( |
| 441 | + # fmt: off |
| 442 | + { |
| 443 | + "index": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], |
| 444 | + "columns": [DATE_COL_NAME, GROUP_COL_NAME, MEASURE_COL_NAME, METRIC_COL_NAME, UNIT_COL_NAME, RISK_COL_NAME,], |
| 445 | + "data": [ |
| 446 | + [pd.Period(2020), "All", NO_MEASURE_VALUE, AAI_METRIC_NAME, "USD", 20.0,], |
| 447 | + [pd.Period(2021), "All", NO_MEASURE_VALUE, AAI_METRIC_NAME, "USD", 105.0,], |
| 448 | + [pd.Period(2022), "All", NO_MEASURE_VALUE, AAI_METRIC_NAME, "USD", 240.0,], |
| 449 | + [pd.Period(2020), "All", NO_MEASURE_VALUE, "rp_10", "USD", 0.0], |
| 450 | + [pd.Period(2021), "All", NO_MEASURE_VALUE, "rp_10", "USD", 0.0], |
| 451 | + [pd.Period(2022), "All", NO_MEASURE_VALUE, "rp_10", "USD", 0.0], |
| 452 | + [pd.Period(2020), "All", NO_MEASURE_VALUE, "rp_60", "USD", 700.0], |
| 453 | + [pd.Period(2021), "All", NO_MEASURE_VALUE, "rp_60", "USD", 3675.0], |
| 454 | + [pd.Period(2022), "All", NO_MEASURE_VALUE, "rp_60", "USD", 8400.0], |
| 455 | + [pd.Period(2020), "All", NO_MEASURE_VALUE, "rp_1000", "USD", 1500.0,], |
| 456 | + [pd.Period(2021), "All", NO_MEASURE_VALUE, "rp_1000", "USD", 7875.0,], |
| 457 | + [pd.Period(2022), "All", NO_MEASURE_VALUE, "rp_1000", "USD", 18000.0,], |
| 458 | + ], |
| 459 | + "index_names": [None], |
| 460 | + "column_names": [None], |
| 461 | + }, |
| 462 | + # fmt: on |
| 463 | + orient="tight", |
| 464 | + ) |
| 465 | + pd.testing.assert_frame_equal( |
| 466 | + interp_traj.per_date_risk_metrics(), |
| 467 | + expected, |
| 468 | + check_dtype=False, |
| 469 | + check_categorical=False, |
| 470 | + ) |
| 471 | + |
| 472 | + # Also check change to other return period |
| 473 | + interp_traj.return_periods = DEFAULT_RP |
| 474 | + pd.testing.assert_frame_equal( |
| 475 | + interp_traj.per_date_risk_metrics(), |
| 476 | + self.expected_interp_metrics, |
| 477 | + check_dtype=False, |
| 478 | + check_categorical=False, |
| 479 | + ) |
| 480 | + |
| 481 | + def test_interp_trajectory_risk_disc_rate(self): |
| 482 | + risk_disc_rate = DiscRates( |
| 483 | + years=np.array(range(2020, 2023)), rates=np.ones(3) * 0.05 |
| 484 | + ) # Easy check for year 2021 -> 105.0 * 1/(1+0.05) == 100. |
| 485 | + interp_traj = InterpolatedRiskTrajectory( |
| 486 | + [self.base_snapshot, self.future_snapshot], risk_disc_rates=risk_disc_rate |
| 487 | + ) |
| 488 | + expected = pd.DataFrame.from_dict( |
| 489 | + # fmt: off |
| 490 | + { |
| 491 | + "index": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], |
| 492 | + "columns": [DATE_COL_NAME, GROUP_COL_NAME, MEASURE_COL_NAME, METRIC_COL_NAME, UNIT_COL_NAME, RISK_COL_NAME,], |
| 493 | + "data": [ |
| 494 | + [pd.Period(2020), "All", NO_MEASURE_VALUE, AAI_METRIC_NAME, "USD", 20.0,], |
| 495 | + [pd.Period(2021), "All", NO_MEASURE_VALUE, AAI_METRIC_NAME, "USD", 100.0,], |
| 496 | + [pd.Period(2022), "All", NO_MEASURE_VALUE, AAI_METRIC_NAME, "USD", 217.68707482993196,], |
| 497 | + [pd.Period(2020), "All", NO_MEASURE_VALUE, "rp_20", "USD", 0.0], |
| 498 | + [pd.Period(2021), "All", NO_MEASURE_VALUE, "rp_20", "USD", 0.0], |
| 499 | + [pd.Period(2022), "All", NO_MEASURE_VALUE, "rp_20", "USD", 0.0], |
| 500 | + [pd.Period(2020), "All", NO_MEASURE_VALUE, "rp_50", "USD", 500.0], |
| 501 | + [pd.Period(2021), "All", NO_MEASURE_VALUE, "rp_50", "USD", 2500.0], |
| 502 | + [pd.Period(2022), "All", NO_MEASURE_VALUE, "rp_50", "USD", 5442.176870748299,], |
| 503 | + [pd.Period(2020), "All", NO_MEASURE_VALUE, "rp_100", "USD", 1500.0], |
| 504 | + [pd.Period(2021), "All", NO_MEASURE_VALUE, "rp_100", "USD", 7500.0], |
| 505 | + [pd.Period(2022), "All", NO_MEASURE_VALUE, "rp_100", "USD", 16326.530612244896,], |
| 506 | + ], |
| 507 | + "index_names": [None], |
| 508 | + "column_names": [None], |
| 509 | + }, |
| 510 | + # fmt: on |
| 511 | + orient="tight", |
| 512 | + ) |
| 513 | + pd.testing.assert_frame_equal( |
| 514 | + interp_traj.per_date_risk_metrics(), |
| 515 | + expected, |
| 516 | + check_dtype=False, |
| 517 | + check_categorical=False, |
| 518 | + ) |
| 519 | + |
| 520 | + # Also check change to other return period |
| 521 | + interp_traj.risk_disc_rates = None |
| 522 | + pd.testing.assert_frame_equal( |
| 523 | + interp_traj.per_date_risk_metrics(), |
| 524 | + self.expected_interp_metrics, |
| 525 | + check_dtype=False, |
| 526 | + check_categorical=False, |
| 527 | + ) |
| 528 | + |
| 529 | + def test_interp_trajectory_risk_contributions(self): |
| 530 | + interp_traj = InterpolatedRiskTrajectory( |
| 531 | + [self.base_snapshot, self.future_snapshot] |
| 532 | + ) |
| 533 | + expected = pd.DataFrame.from_dict( |
| 534 | + # fmt: off |
| 535 | + {'index': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], |
| 536 | + 'columns': [DATE_COL_NAME, GROUP_COL_NAME, MEASURE_COL_NAME, METRIC_COL_NAME, UNIT_COL_NAME, RISK_COL_NAME,], |
| 537 | + 'data': [ |
| 538 | + [pd.Period(str(2020)), 'All', NO_MEASURE_VALUE, CONTRIBUTION_BASE_RISK_NAME, 'USD', 20.0], |
| 539 | + [pd.Period(str(2021)), 'All', NO_MEASURE_VALUE, CONTRIBUTION_BASE_RISK_NAME, 'USD', 20.0], |
| 540 | + [pd.Period(str(2022)), 'All', NO_MEASURE_VALUE, CONTRIBUTION_BASE_RISK_NAME, 'USD', 20.0], |
| 541 | + [pd.Period(str(2020)), 'All', NO_MEASURE_VALUE, CONTRIBUTION_EXPOSURE_NAME, 'USD', 0.0], |
| 542 | + [pd.Period(str(2021)), 'All', NO_MEASURE_VALUE, CONTRIBUTION_EXPOSURE_NAME, 'USD', 50.0], |
| 543 | + [pd.Period(str(2022)), 'All', NO_MEASURE_VALUE, CONTRIBUTION_EXPOSURE_NAME, 'USD', 100.0], |
| 544 | + [pd.Period(str(2020)), 'All', NO_MEASURE_VALUE, CONTRIBUTION_HAZARD_NAME, 'USD', 0.0], |
| 545 | + [pd.Period(str(2021)), 'All', NO_MEASURE_VALUE, CONTRIBUTION_HAZARD_NAME, 'USD', 10.0], |
| 546 | + [pd.Period(str(2022)), 'All', NO_MEASURE_VALUE, CONTRIBUTION_HAZARD_NAME, 'USD', 20.0], |
| 547 | + [pd.Period(str(2020)), 'All', NO_MEASURE_VALUE, CONTRIBUTION_VULNERABILITY_NAME, 'USD', 0.0], |
| 548 | + [pd.Period(str(2021)), 'All', NO_MEASURE_VALUE, CONTRIBUTION_VULNERABILITY_NAME, 'USD', 0.0], |
| 549 | + [pd.Period(str(2022)), 'All', NO_MEASURE_VALUE, CONTRIBUTION_VULNERABILITY_NAME, 'USD', 0.0], |
| 550 | + [pd.Period(str(2020)), 'All', NO_MEASURE_VALUE, CONTRIBUTION_INTERACTION_TERM_NAME, 'USD', 0.0], |
| 551 | + [pd.Period(str(2021)), 'All', NO_MEASURE_VALUE, CONTRIBUTION_INTERACTION_TERM_NAME, 'USD', 25.0], |
| 552 | + [pd.Period(str(2022)), 'All', NO_MEASURE_VALUE, CONTRIBUTION_INTERACTION_TERM_NAME, 'USD', 100.0]], |
| 553 | + 'index_names': [None], |
| 554 | + 'column_names': [None]}, |
| 555 | + # fmt: on |
| 556 | + orient="tight", |
| 557 | + ) |
| 558 | + pd.testing.assert_frame_equal( |
| 559 | + interp_traj.risk_contributions_metrics(), |
| 560 | + expected, |
| 561 | + check_dtype=False, |
| 562 | + check_categorical=False, |
| 563 | + ) |
| 564 | + |
| 565 | + # With changing vulnerability |
| 566 | + hazard = reusable_minimal_hazard() |
| 567 | + impfset1 = ImpactFuncSet( |
| 568 | + [ |
| 569 | + ImpactFunc( |
| 570 | + haz_type=hazard.haz_type, |
| 571 | + intensity_unit=hazard.units, |
| 572 | + name="linear", |
| 573 | + intensity=np.array([0, 100 / 2, 100]), |
| 574 | + mdd=np.array([0, 0.5, 1]), |
| 575 | + paa=np.array([1, 1, 1]), |
| 576 | + id=1, |
| 577 | + ), |
| 578 | + ] |
| 579 | + ) |
| 580 | + impfset2 = ImpactFuncSet( |
| 581 | + [ |
| 582 | + ImpactFunc( |
| 583 | + haz_type=hazard.haz_type, |
| 584 | + intensity_unit=hazard.units, |
| 585 | + name="linear-half-paa", |
| 586 | + intensity=np.array([0, 100 / 2, 100]), |
| 587 | + mdd=np.array([0, 0.5, 1]), |
| 588 | + paa=np.array([0.5, 0.5, 0.5]), |
| 589 | + id=1, |
| 590 | + ) |
| 591 | + ] |
| 592 | + ) |
| 593 | + base_snapshot = Snapshot( |
| 594 | + exposure=reusable_minimal_exposures(), |
| 595 | + hazard=hazard, |
| 596 | + impfset=impfset1, |
| 597 | + date=2020, |
| 598 | + ) |
| 599 | + future_snapshot = Snapshot( |
| 600 | + exposure=reusable_minimal_exposures( |
| 601 | + increase_value_factor=self.EXP_INCREASE_VALUE_FACTOR, |
| 602 | + ), |
| 603 | + hazard=reusable_minimal_hazard( |
| 604 | + intensity_factor=self.HAZ_INCREASE_INTENSITY_FACTOR |
| 605 | + ), |
| 606 | + impfset=impfset2, |
| 607 | + date=2022, |
| 608 | + ) |
| 609 | + |
| 610 | + interp_traj = InterpolatedRiskTrajectory([base_snapshot, future_snapshot]) |
| 611 | + expected = pd.DataFrame.from_dict( |
| 612 | + # fmt: off |
| 613 | + {'index': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], |
| 614 | + 'columns': [DATE_COL_NAME, GROUP_COL_NAME, MEASURE_COL_NAME, METRIC_COL_NAME, UNIT_COL_NAME, RISK_COL_NAME,], |
| 615 | + 'data': [ |
| 616 | + [pd.Period(str(2020)), 'All', NO_MEASURE_VALUE, CONTRIBUTION_BASE_RISK_NAME, 'USD', 20.0], |
| 617 | + [pd.Period(str(2021)), 'All', NO_MEASURE_VALUE, CONTRIBUTION_BASE_RISK_NAME, 'USD', 20.0], |
| 618 | + [pd.Period(str(2022)), 'All', NO_MEASURE_VALUE, CONTRIBUTION_BASE_RISK_NAME, 'USD', 20.0], |
| 619 | + [pd.Period(str(2020)), 'All', NO_MEASURE_VALUE, CONTRIBUTION_EXPOSURE_NAME, 'USD', 0.0], |
| 620 | + [pd.Period(str(2021)), 'All', NO_MEASURE_VALUE, CONTRIBUTION_EXPOSURE_NAME, 'USD', 50.0], |
| 621 | + [pd.Period(str(2022)), 'All', NO_MEASURE_VALUE, CONTRIBUTION_EXPOSURE_NAME, 'USD', 100.0], |
| 622 | + [pd.Period(str(2020)), 'All', NO_MEASURE_VALUE, CONTRIBUTION_HAZARD_NAME, 'USD', 0.0], |
| 623 | + [pd.Period(str(2021)), 'All', NO_MEASURE_VALUE, CONTRIBUTION_HAZARD_NAME, 'USD', 10.0], |
| 624 | + [pd.Period(str(2022)), 'All', NO_MEASURE_VALUE, CONTRIBUTION_HAZARD_NAME, 'USD', 20.0], |
| 625 | + [pd.Period(str(2020)), 'All', NO_MEASURE_VALUE, CONTRIBUTION_VULNERABILITY_NAME, 'USD', 0.0], |
| 626 | + [pd.Period(str(2021)), 'All', NO_MEASURE_VALUE, CONTRIBUTION_VULNERABILITY_NAME, 'USD', -5.0], |
| 627 | + [pd.Period(str(2022)), 'All', NO_MEASURE_VALUE, CONTRIBUTION_VULNERABILITY_NAME, 'USD', -10.0], |
| 628 | + [pd.Period(str(2020)), 'All', NO_MEASURE_VALUE, CONTRIBUTION_INTERACTION_TERM_NAME, 'USD', 0.0], |
| 629 | + [pd.Period(str(2021)), 'All', NO_MEASURE_VALUE, CONTRIBUTION_INTERACTION_TERM_NAME, 'USD', 3.75], |
| 630 | + [pd.Period(str(2022)), 'All', NO_MEASURE_VALUE, CONTRIBUTION_INTERACTION_TERM_NAME, 'USD', -10.0]], |
| 631 | + 'index_names': [None], |
| 632 | + 'column_names': [None]}, |
| 633 | + # fmt: on |
| 634 | + orient="tight", |
| 635 | + ) |
| 636 | + pd.testing.assert_frame_equal( |
| 637 | + interp_traj.risk_contributions_metrics(), |
| 638 | + expected, |
| 639 | + check_dtype=False, |
| 640 | + check_categorical=False, |
| 641 | + ) |
0 commit comments