|
| 1 | +""" |
| 2 | +This file is part of CLIMADA. |
| 3 | +
|
| 4 | +Copyright (C) 2017 ETH Zurich, CLIMADA contributors listed in AUTHORS. |
| 5 | +
|
| 6 | +CLIMADA is free software: you can redistribute it and/or modify it under the |
| 7 | +terms of the GNU General Public License as published by the Free |
| 8 | +Software Foundation, version 3. |
| 9 | +
|
| 10 | +CLIMADA is distributed in the hope that it will be useful, but WITHOUT ANY |
| 11 | +WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A |
| 12 | +PARTICULAR PURPOSE. See the GNU General Public License for more details. |
| 13 | +
|
| 14 | +You should have received a copy of the GNU General Public License along |
| 15 | +with CLIMADA. If not, see <https://www.gnu.org/licenses/>. |
| 16 | +
|
| 17 | +--- |
| 18 | +Cross-calibration on top of a single calibration module |
| 19 | +""" |
| 20 | + |
| 21 | +from abc import ABC, abstractmethod |
| 22 | +from dataclasses import dataclass, InitVar, field |
| 23 | +from typing import Optional, List, Mapping, Any, Tuple, Union, Sequence |
| 24 | +from copy import copy, deepcopy |
| 25 | +from pathlib import Path |
| 26 | + |
| 27 | +import numpy as np |
| 28 | +from numpy.random import default_rng |
| 29 | +import pandas as pd |
| 30 | + |
| 31 | +from ...engine.unsequa.input_var import InputVar |
| 32 | +from .base import Optimizer, Output, Input |
| 33 | + |
| 34 | +# TODO: derived classes for average and tragedy |
| 35 | + |
| 36 | + |
| 37 | +def sample_data(data: pd.DataFrame, sample: List[Tuple[int, int]]): |
| 38 | + """Return a sample of the data""" |
| 39 | + # Create all-NaN data |
| 40 | + data_sampled = pd.DataFrame(np.nan, columns=data.columns, index=data.index) |
| 41 | + |
| 42 | + # Extract sample values from data |
| 43 | + for x, y in sample: |
| 44 | + data_sampled.iloc[x, y] = data.iloc[x, y] |
| 45 | + |
| 46 | + return data_sampled |
| 47 | + |
| 48 | + |
| 49 | +@dataclass |
| 50 | +class EnsembleOptimizerOutput: |
| 51 | + data: pd.DataFrame |
| 52 | + |
| 53 | + @classmethod |
| 54 | + def from_outputs(cls, outputs: Sequence[Output]): |
| 55 | + """Build data from a list of outputs""" |
| 56 | + cols = pd.MultiIndex.from_tuples( |
| 57 | + [("Parameters", p_name) for p_name in outputs[0].params.keys()] |
| 58 | + + [("Event", p_name) for p_name in outputs[0].event_info] |
| 59 | + ) |
| 60 | + data = pd.DataFrame(columns=cols) |
| 61 | + |
| 62 | + # Fill with data |
| 63 | + data["Parameters"] = pd.DataFrame.from_records([out.params for out in outputs]) |
| 64 | + data["Event"] = pd.DataFrame.from_records([out.event_info for out in outputs]) |
| 65 | + |
| 66 | + return cls(data=data) |
| 67 | + # return cls(data=pd.DataFrame.from_records([out.params for out in outputs])) |
| 68 | + |
| 69 | + @classmethod |
| 70 | + def from_csv(cls, filepath): |
| 71 | + """Load data from CSV""" |
| 72 | + return cls(data=pd.read_csv(filepath, header=[0, 1])) |
| 73 | + |
| 74 | + def to_csv(self, filepath): |
| 75 | + """Store data as CSV""" |
| 76 | + self.data.to_csv(filepath, index=None) |
| 77 | + |
| 78 | + def to_input_var(self, impact_func_gen, **impfset_kwargs): |
| 79 | + """Build Unsequa InputVar from the parameters stored in this object""" |
| 80 | + impf_set_list = [ |
| 81 | + impact_func_gen(**params) for _, params in self.data.iterrows() |
| 82 | + ] |
| 83 | + return InputVar.impfset(impf_set_list, **impfset_kwargs) |
| 84 | + |
| 85 | + # Build MultiIndex DataFrame |
| 86 | + # data = pd.DataFrame( |
| 87 | + # columns=pd.MultiIndex.from_tuples( |
| 88 | + # [("Parameters", p_name) for p_name in outputs[0].params.keys()] |
| 89 | + # ) |
| 90 | + # ) |
| 91 | + |
| 92 | + # Insert Parameters |
| 93 | + # params = pd.DataFrame.from_records([out.params for out in outputs]) |
| 94 | + # for p_name in params.columns: |
| 95 | + # data["Parameters", p_name] = params[p_name] |
| 96 | + |
| 97 | + # Insert |
| 98 | + |
| 99 | + # return cls(data=pd.DataFrame.from_records([out.params for out in outputs])) |
| 100 | + |
| 101 | + |
| 102 | +@dataclass |
| 103 | +class EnsembleOptimizer(ABC): |
| 104 | + """""" |
| 105 | + |
| 106 | + input: Input |
| 107 | + optimizer_type: Any |
| 108 | + optimizer_init_kwargs: Mapping[str, Any] = field(default_factory=dict) |
| 109 | + samples: List[List[Tuple[int, int]]] = field(init=False) |
| 110 | + |
| 111 | + def __post_init__(self): |
| 112 | + """""" |
| 113 | + if self.samples is None: |
| 114 | + raise RuntimeError("Samples must be set!") |
| 115 | + |
| 116 | + def run(self, **optimizer_run_kwargs) -> EnsembleOptimizerOutput: |
| 117 | + outputs = [] |
| 118 | + for idx, sample in enumerate(self.samples): |
| 119 | + input = self.input_from_sample(sample) |
| 120 | + |
| 121 | + # Run optimizer |
| 122 | + opt = self.optimizer_type(input, **self.optimizer_init_kwargs) |
| 123 | + out = opt.run(**optimizer_run_kwargs) |
| 124 | + |
| 125 | + out.event_info = self.event_info_from_input(input) |
| 126 | + print(f"Ensemble: {idx}, Params: {out.params}") |
| 127 | + outputs.append(out) |
| 128 | + |
| 129 | + return EnsembleOptimizerOutput.from_outputs(outputs) |
| 130 | + |
| 131 | + @abstractmethod |
| 132 | + def input_from_sample(self, sample: List[Tuple[int, int]]): |
| 133 | + """""" |
| 134 | + |
| 135 | + def event_info_from_input(self, input: Input): |
| 136 | + """Get information on the event(s) for which we calibrated""" |
| 137 | + # Get region and event IDs |
| 138 | + data = input.data.dropna(axis="columns", how="all").dropna( |
| 139 | + axis="index", how="all" |
| 140 | + ) |
| 141 | + event_ids = data.index |
| 142 | + region_ids = data.columns |
| 143 | + |
| 144 | + # Get event name |
| 145 | + event_names = input.hazard.select(event_id=event_ids.to_list()).event_name |
| 146 | + |
| 147 | + # Return data |
| 148 | + return { |
| 149 | + "event_id": event_ids, |
| 150 | + "region_id": region_ids, |
| 151 | + "event_name": event_names, |
| 152 | + } |
| 153 | + |
| 154 | + |
| 155 | +@dataclass |
| 156 | +class AverageEnsembleOptimizer(EnsembleOptimizer): |
| 157 | + """""" |
| 158 | + |
| 159 | + sample_fraction: InitVar[float] = 0.8 |
| 160 | + ensemble_size: InitVar[int] = 20 |
| 161 | + random_state: InitVar[int] = 1 |
| 162 | + |
| 163 | + def __post_init__(self, sample_fraction, ensemble_size, random_state): |
| 164 | + """Create the samples""" |
| 165 | + if sample_fraction <= 0 or sample_fraction >= 1: |
| 166 | + raise ValueError("Sample fraction must be in (0, 1)") |
| 167 | + if ensemble_size < 1: |
| 168 | + raise ValueError("Ensemble size must be >=1") |
| 169 | + |
| 170 | + # Find out number of samples |
| 171 | + notna_idx = np.argwhere(self.input.data.notna().to_numpy()) |
| 172 | + num_notna = notna_idx.shape[0] |
| 173 | + num_samples = int(np.rint(num_notna * sample_fraction)) |
| 174 | + |
| 175 | + # Create samples |
| 176 | + rng = default_rng(random_state) |
| 177 | + self.samples = [ |
| 178 | + rng.choice(notna_idx, size=num_samples, replace=False) |
| 179 | + for _ in range(ensemble_size) |
| 180 | + ] |
| 181 | + |
| 182 | + return super().__post_init__() |
| 183 | + |
| 184 | + def input_from_sample(self, sample: List[Tuple[int, int]]): |
| 185 | + """Shallow-copy the input and update the data""" |
| 186 | + input = copy(self.input) # NOTE: Shallow copy! |
| 187 | + input.data = sample_data(input.data, sample) |
| 188 | + return input |
| 189 | + |
| 190 | + |
| 191 | +@dataclass |
| 192 | +class TragedyEnsembleOptimizer(EnsembleOptimizer): |
| 193 | + """""" |
| 194 | + |
| 195 | + def __post_init__(self): |
| 196 | + """Create the single samples""" |
| 197 | + notna_idx = np.argwhere(self.input.data.notna().to_numpy()) |
| 198 | + self.samples = notna_idx[:, np.newaxis].tolist() # Must extend by one dimension |
| 199 | + |
| 200 | + return super().__post_init__() |
| 201 | + |
| 202 | + def input_from_sample(self, sample: List[Tuple[int, int]]): |
| 203 | + """Subselect all input""" |
| 204 | + # Data |
| 205 | + input = copy(self.input) # NOTE: Shallow copy! |
| 206 | + data = sample_data(input.data, sample) |
| 207 | + input.data = data.dropna(axis="columns", how="all").dropna( |
| 208 | + axis="index", how="all" |
| 209 | + ) |
| 210 | + |
| 211 | + # Select single hazard event |
| 212 | + input.hazard = input.hazard.select(event_id=input.data.index) |
| 213 | + |
| 214 | + # Select single region in exposure |
| 215 | + # NOTE: This breaks impact_at_reg with pre-defined region IDs!! |
| 216 | + # exp = input.exposure.copy(deep=False) |
| 217 | + # exp.gdf = exp.gdf[exp.gdf["region_id"] == input.data.columns[0]] |
| 218 | + # input.exposure = exp |
| 219 | + |
| 220 | + return input |
| 221 | + |
| 222 | + |
| 223 | +# @dataclass |
| 224 | +# class CrossCalibration: |
| 225 | +# """A class for running multiple calibration tasks on data subsets""" |
| 226 | + |
| 227 | +# input: Input |
| 228 | +# optimizer_type: Any |
| 229 | +# sample_size: int = 1 |
| 230 | +# ensemble_size: Optional[int] = None |
| 231 | +# random_state: InitVar[int] = 1 |
| 232 | +# optimizer_init_kwargs: Mapping[str, Any] = field(default_factory=dict) |
| 233 | + |
| 234 | +# def __post_init__(self, random_state): |
| 235 | +# """""" |
| 236 | +# if self.sample_size < 1: |
| 237 | +# raise ValueError("Sample size must be >=1") |
| 238 | +# if self.sample_size > 1 and self.ensemble_size is None: |
| 239 | +# raise ValueError("Ensemble size must be set if sample size > 1") |
| 240 | + |
| 241 | +# # Copy the original data |
| 242 | +# self.data = self.input.data.copy() |
| 243 | +# notna_idx = np.argwhere(self.data.notna().to_numpy()) |
| 244 | + |
| 245 | +# # Create the samples |
| 246 | +# if self.ensemble_size is not None: |
| 247 | +# rng = default_rng(random_state) |
| 248 | +# self.samples = [ |
| 249 | +# rng.choice(notna_idx, size=self.sample_size, replace=False) |
| 250 | +# for _ in range(self.ensemble_size) |
| 251 | +# ] |
| 252 | +# else: |
| 253 | +# self.samples = notna_idx.tolist() |
| 254 | + |
| 255 | +# print("Samples:\n", self.samples) |
| 256 | + |
| 257 | +# def run(self, **optimizer_run_kwargs) -> List[Output]: |
| 258 | +# """Run the optimizer for the ensemble""" |
| 259 | +# outputs = [] |
| 260 | +# for idx, sample in enumerate(self.samples): |
| 261 | +# # Select data samples |
| 262 | +# data_sample = self.data.copy() |
| 263 | +# data_sample.iloc[:, :] = np.nan # Set all to NaN |
| 264 | +# for x, y in sample: |
| 265 | +# data_sample.iloc[x, y] = self.data.iloc[x, y] |
| 266 | + |
| 267 | +# # Run the optimizer |
| 268 | +# input = deepcopy(self.input) |
| 269 | +# input.data = data_sample |
| 270 | + |
| 271 | +# # NOTE: NOO assign_centroids |
| 272 | +# opt = self.optimizer_type(input, **self.optimizer_init_kwargs) |
| 273 | +# out = opt.run(**optimizer_run_kwargs) |
| 274 | +# outputs.append(out) |
| 275 | +# print(f"Ensemble: {idx}, Params: {out.params}") |
| 276 | + |
| 277 | +# return outputs |
| 278 | + |
| 279 | + |
| 280 | +# # TODO: Tragedy: Localize exposure and hazards! |
| 281 | +# @dataclass |
| 282 | +# class TragedyEnsembleCrossCalibration(CrossCalibration): |
| 283 | +# """Cross calibration for computing an ensemble of tragedies""" |
0 commit comments