2121
2222import numpy as np
2323import numpy .testing as npt
24+ import pandas as pd
2425
2526from climada .util .forecast import Forecast
2627
@@ -34,19 +35,18 @@ def test_forecast_init():
3435 forecast = Forecast (member = np .array ([1 , 2 ]))
3536 npt .assert_array_equal (forecast .member , np .array ([1 , 2 ]), strict = True )
3637
37- forecast = Forecast (lead_time = np .array ([1 , 2 ]))
38- npt .assert_array_equal (forecast .lead_time , np .array ([1 , 2 ]), strict = True )
38+ forecast = Forecast (lead_time = np .array ([6 , 12 ], dtype = "timedelta64[h]" ))
39+ npt .assert_array_equal (
40+ forecast .lead_time , np .array ([6 , 12 ], dtype = "timedelta64[h]" ), strict = True
41+ )
3942
4043 forecast = Forecast (lead_time = np .array ([1 , 2 ]), member = [3 , 4 ])
4144 npt .assert_array_equal (forecast .lead_time , np .array ([1 , 2 ]), strict = True )
4245 npt .assert_array_equal (forecast .member , np .array ([3 , 4 ]), strict = True )
4346 assert isinstance (forecast .member , np .ndarray )
4447
4548 # Test with datetime64 including seconds
46- lead_times_seconds = np .array (
47- ["2024-01-01T00:00:00" , "2024-01-01T00:01:00" , "2024-01-01" ],
48- dtype = "datetime64[s]" ,
49- )
49+ lead_times_seconds = pd .timedelta_range (start = "1 day" , periods = 4 ).to_numpy ()
5050 forecast = Forecast (lead_time = lead_times_seconds , member = [1 , 2 , 3 ])
5151 npt .assert_array_equal (forecast .lead_time , lead_times_seconds , strict = True )
52- assert forecast .lead_time .dtype == np .dtype ("datetime64[s ]" )
52+ assert forecast .lead_time .dtype == np .dtype ("timedelta64[ns ]" )
0 commit comments