@@ -574,9 +574,8 @@ def _clean_firms_df(self, df_firms):
574574 # Check for the type of instrument (MODIS vs VIIRS)
575575 # Remove data with low confidence interval
576576 # Uniformize the name of the birghtness columns between VIIRS and MODIS
577- temp = pd .DataFrame ()
578577 if 'instrument' in df_firms .columns :
579- if df_firms .instrument . any () == 'MODIS' or df_firms .instrument . any () == 'VIIRS' :
578+ if ( df_firms .instrument == 'MODIS' ). any () or ( df_firms .instrument == 'VIIRS' ). any () :
580579 df_firms_modis = df_firms .drop (df_firms [df_firms .instrument == 'VIIRS' ].index )
581580 df_firms_modis .confidence = np .array (
582581 list (map (int , df_firms_modis .confidence .values .tolist ())))
@@ -591,9 +590,9 @@ def _clean_firms_df(self, df_firms):
591590 temp = temp .append (df_firms_viirs , sort = True )
592591 temp = temp .drop (columns = ['bright_ti4' ])
593592
594- df_firms = temp
595- df_firms = df_firms .reset_index ()
596- df_firms = df_firms .drop (columns = ['index' ])
593+ df_firms = temp
594+ df_firms = df_firms .reset_index ()
595+ df_firms = df_firms .drop (columns = ['index' ])
597596
598597 df_firms ['iter_ev' ] = np .ones (len (df_firms ), bool )
599598 df_firms ['cons_id' ] = np .zeros (len (df_firms ), int ) - 1
@@ -619,7 +618,7 @@ def _firms_resolution(df_firms):
619618 """
620619 # Resolution in km of the centroids depends on the data origin.
621620 if 'instrument' in df_firms .columns :
622- if df_firms ['instrument' ]. any () == 'MODIS' :
621+ if ( df_firms ['instrument' ] == 'MODIS' ). any () :
623622 res_data = 1.0
624623 else :
625624 res_data = 0.375 # For VIIRS data
0 commit comments