Skip to content

Commit e33ecc7

Browse files
committed
Fix linter issue where builtin 'input' was shadowed
1 parent 62519bb commit e33ecc7

File tree

1 file changed

+19
-25
lines changed

1 file changed

+19
-25
lines changed

climada/util/calibrate/ensemble.py

Lines changed: 19 additions & 25 deletions
Original file line numberDiff line numberDiff line change
@@ -560,9 +560,9 @@ def _iterate_sequential(
560560
"""Iterate over all samples sequentially"""
561561
return [
562562
optimize(
563-
self.optimizer_type, input, init_kwargs, deepcopy(optimizer_run_kwargs)
563+
self.optimizer_type, inp, init_kwargs, deepcopy(optimizer_run_kwargs)
564564
)
565-
for input, init_kwargs in tqdm(
565+
for inp, init_kwargs in tqdm(
566566
zip(self._inputs(), self._opt_init_kwargs()), total=len(self.samples)
567567
)
568568
]
@@ -651,19 +651,19 @@ def __post_init__(self, sample_fraction, ensemble_size, random_state, replace):
651651

652652
def input_from_sample(self, sample: list[tuple[int, int]]):
653653
"""Shallow-copy the input and update the data"""
654-
input = copy(self.input) # NOTE: Shallow copy!
654+
inp = copy(self.input) # NOTE: Shallow copy!
655655

656656
# Sampling
657657
# NOTE: We always need samples to support `replace=True`
658-
input.data = sample_data(input.data, sample)
658+
inp.data = sample_data(inp.data, sample)
659659
weights = (
660-
input.data_weights
661-
if input.data_weights is not None
662-
else pd.DataFrame(1.0, index=input.data.index, columns=input.data.columns)
660+
inp.data_weights
661+
if inp.data_weights is not None
662+
else pd.DataFrame(1.0, index=inp.data.index, columns=inp.data.columns)
663663
)
664-
input.data_weights = sample_weights(weights, sample)
664+
inp.data_weights = sample_weights(weights, sample)
665665

666-
return input
666+
return inp
667667

668668

669669
@dataclass
@@ -708,28 +708,22 @@ def __post_init__(self, ensemble_size, random_state):
708708
def input_from_sample(self, sample: list[tuple[int, int]]):
709709
"""Subselect all input"""
710710
# Data
711-
input = copy(self.input) # NOTE: Shallow copy!
712-
data = sample_data(input.data, sample)
713-
input.data = data.dropna(axis="columns", how="all").dropna(
711+
inp = copy(self.input) # NOTE: Shallow copy!
712+
data = sample_data(inp.data, sample)
713+
inp.data = data.dropna(axis="columns", how="all").dropna(
714714
axis="index", how="all"
715715
)
716-
if input.data_weights is not None:
717-
input.data_weights, _ = input.data_weights.align(
718-
input.data,
716+
if inp.data_weights is not None:
717+
inp.data_weights, _ = inp.data_weights.align(
718+
inp.data,
719719
axis=None,
720720
join="right",
721721
copy=True,
722-
fill_value=input.missing_weights_value,
722+
fill_value=inp.missing_weights_value,
723723
)
724-
input.data_weights = sample_weights(input.data_weights, sample)
724+
inp.data_weights = sample_weights(inp.data_weights, sample)
725725

726726
# Select single hazard event
727-
input.hazard = input.hazard.select(event_id=input.data.index)
727+
inp.hazard = inp.hazard.select(event_id=inp.data.index)
728728

729-
# Select single region in exposure
730-
# NOTE: This breaks impact_at_reg with pre-defined region IDs!!
731-
# exp = input.exposure.copy(deep=False)
732-
# exp.gdf = exp.gdf[exp.gdf["region_id"] == input.data.columns[0]]
733-
# input.exposure = exp
734-
735-
return input
729+
return inp

0 commit comments

Comments
 (0)