@@ -308,18 +308,15 @@ def _cleanup_ms(input_ms_path, output_ms_path, num_rows, starting_range, static_
308308 if colname not in ['FLAG_ROW' , 'TIME' , 'TIME_CENTROID' ]:
309309 continue
310310
311- print (colname )
312311 try :
313- print ("I'm working here" )
314312
315313 desc = ms .getcoldesc (colname )
316314 ndim = desc .get ('ndim' , 0 )
317315
318- # Caso 1: columna escalar (optimizado con acceso parcial)
319316 if ndim == 0 :
320- print ("scalar (optimized)" )
321317 sliced_data = ms .getcol (colname , startrow = starting_range , nrow = fixed_rows )
322- ms .putcol (colname , sliced_data , startrow = 0 )
318+ ms .putcol (colname , value = sliced_data , startrow = 0 , nrow = fixed_rows )
319+ print ("[DATAPLUG] Scalar column processed successfully." )
323320 continue
324321
325322
@@ -341,12 +338,11 @@ def _cleanup_ms(input_ms_path, output_ms_path, num_rows, starting_range, static_
341338 ms .putcolslice (colname , buf , blc , trc ,
342339 startrow = 0 ,
343340 nrow = fixed_rows )
341+ print ("[DATAPLUG] Experimental: Array column processed successfully." )
344342
345343 except Exception as e :
346- # print(f"Error procesando columna '{colname}': {e}")
347344 continue
348345
349- # Copiar primeras filas al nuevo MS
350346 selection = ms .selectrows (list (range (0 , fixed_rows )))
351347 selection .copy (output_ms_path , deep = True )
352348
@@ -413,9 +409,10 @@ def get(self):
413409def ms_partitioning_strategy (cloud_object : CloudObject , num_chunks : int ):
414410
415411 total_rows = cloud_object .get_attribute ("total_rows" )
416- rows_per_timestamp = cloud_object .get_attribute ("rows_per_time" )
417-
412+ rows_per_timestamp = int ( cloud_object .get_attribute ("rows_per_time" ) )
413+ print ( f"[DATAPLUG] Total rows: { total_rows } , Rows per timestamp: { rows_per_timestamp } " )
418414 max_chunks = total_rows // rows_per_timestamp
415+ print (f"[DATAPLUG] Partition cap: { max_chunks } " ) #DEBUG
419416 num_chunks = min (num_chunks , max_chunks )
420417
421418 slices = []
0 commit comments