diff --git a/CMakeLists.txt b/CMakeLists.txt index 33b71615b..fe0f4b0c1 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -11,8 +11,8 @@ endif() list(INSERT CMAKE_MODULE_PATH 0 "${CMAKE_CURRENT_LIST_DIR}/cmake") set(MGARD_VERSION_MAJOR "1") -set(MGARD_VERSION_MINOR "5") -set(MGARD_VERSION_PATCH "2") +set(MGARD_VERSION_MINOR "6") +set(MGARD_VERSION_PATCH "0") set(MGARD_FILE_VERSION_MAJOR "1") set(MGARD_FILE_VERSION_MINOR "0") diff --git a/README.md b/README.md index 948c205fd..ee1a4a343 100644 --- a/README.md +++ b/README.md @@ -69,6 +69,7 @@ Data produced by MGARD, MGARD-X, and MDR-X are designed to follow a unified self * Ben Whitney. [Multilevel Techniques for Compression and Reduction of Scientific Data.][thesis] PhD thesis, Brown University, 2018. ### Preserving Quantites of Interest (QoIs) +* Xuan Wu et al. [Error-controlled Progressive Retrieval of Scientific Data under Derivable Quantities of Interest.] [qoi] **the International Conference for High Performance Computing, Networking, Storage and Analysis 2024*, Nov, 2024* * Tania Banerjee et al. [Scalable Hybrid Learning Techniques for Scientific Data Compression.][pp3], *Arxiv*, 2022 * Qian Gong et al. [Region-adaptive, Error-controlled Scientific Data Compression using Multilevel Decomposition.][roi2] *the 34th International Conference on Scientific and Statistical Database Management*, Jul. 2022 * Tania Benerjee et al. An algorithmic and software pipeline for very large scale scientific data compression with error guarantees. *International Conference on High Performance Computing, Data, and Analytics*, 2022 @@ -79,8 +80,8 @@ Data produced by MGARD, MGARD-X, and MDR-X are designed to follow a unified self * Jinzheng Wang et al. Improving Progressive Retrieval for HPC Scientific Data using Deep Neural Network. *IEEE International Conference on Data Engineering (ICDE)*, 2023 * Xin Liang et al. [Error-controlled, progressive, and adaptable retrieval of scientific data with multilevel decomposition.][mdr] *the International Conference for High Performance Computing, Networking, Storage and Analysis 2021*, Nov, 2021 - ### Parallelization and GPU Acceleration +* Jieyang Chen et al. [HPDR: High-Performance Portable Scientific Data Reduction Framework.][gpu3] 39th IEEE International Parallel and Distributed Processing Symposium, June 3-7, 2025 * Jieyang Chen et al. [Scalable Multigrid-based Hierarchical Scientific Data Refactoring on GPUs.][gpu2] *Arxiv* * Jieyang Chen et al. [Accelerating Multigrid-based Hierarchical Scientific Data Refactoring on GPUs.][gpu] *35th IEEE International Parallel & Distributed Processing Symposium*, May 17–21, 2021. @@ -95,6 +96,7 @@ Data produced by MGARD, MGARD-X, and MDR-X are designed to follow a unified self [unstructured]: https://doi.org/10.1137/19M1267878 [gpu]: https://ieeexplore.ieee.org/abstract/document/9460526/ [gpu2]: https://arxiv.org/abs/2105.12764 +[gpu3]: https://ieeexplore.ieee.org/document/11078565 [mgard+]: https://ieeexplore.ieee.org/abstract/document/9479913/ [unbalanced-io]: https://ieeexplore.ieee.org/abstract/document/9652573/ [mdr]: https://dl.acm.org/doi/abs/10.1145/3458817.3476179 @@ -102,6 +104,7 @@ Data produced by MGARD, MGARD-X, and MDR-X are designed to follow a unified self [roi2]: https://dl.acm.org/doi/abs/10.1145/3538712.3538717 [pp]: https://www.mdpi.com/1709018 [pp3]: https://arxiv.org/abs/2212.10733 +[qoi]: https://ieeexplore.ieee.org/abstract/document/10793162