|
| 1 | +# Kubernetes Failure Prediction |
| 2 | + |
| 3 | +## 📌 Project Overview |
| 4 | +This project predicts potential failures in Kubernetes clusters using machine learning. The model is trained to detect issues such as: |
| 5 | +- 🚨 **Node or pod failures** |
| 6 | +- 🖥 **Resource exhaustion** (CPU, memory, disk) |
| 7 | +- 🌐 **Network or connectivity issues** |
| 8 | +- ⚠️ **Service disruptions** based on logs and events |
| 9 | + |
| 10 | +The solution is packaged into a **FastAPI** service and deployed using **Docker** and **Kubernetes**. |
| 11 | + |
| 12 | +--- |
| 13 | + |
| 14 | +## 📂 Directory Structure |
| 15 | +``` |
| 16 | +📦 k8s-failure-prediction |
| 17 | +├── 📁 data # Raw & processed data files |
| 18 | +│ ├── raw_metrics.csv # Original collected metrics |
| 19 | +│ ├── processed_metrics.csv # Preprocessed data for training |
| 20 | +│ |
| 21 | +├── 📁 models # Trained machine learning models |
| 22 | +│ ├── failure_predictor.pkl # Final trained model |
| 23 | +│ |
| 24 | +├── 📁 scripts # Model training and evaluation scripts |
| 25 | +│ ├── train_model.py # Script to train the ML model |
| 26 | +│ ├── evaluate_model.py # Model evaluation script |
| 27 | +│ |
| 28 | +├── 📁 app # API service |
| 29 | +│ ├── app.py # FastAPI service for predictions |
| 30 | +│ ├── Dockerfile # Dockerfile for containerization |
| 31 | +│ |
| 32 | +├── 📁 deployment # Kubernetes deployment files |
| 33 | +│ ├── deployment.yaml # Kubernetes deployment manifest |
| 34 | +│ ├── service.yaml # Kubernetes service manifest |
| 35 | +│ |
| 36 | +├── README.md # Documentation |
| 37 | +└── requirements.txt # Python dependencies |
| 38 | +``` |
| 39 | + |
| 40 | +--- |
| 41 | + |
| 42 | +## 🚀 Setup & Installation |
| 43 | + |
| 44 | +### 1️⃣ Install Dependencies |
| 45 | +Ensure you have Python 3.8+ installed. Then, install the required libraries: |
| 46 | +```bash |
| 47 | +pip install -r requirements.txt |
| 48 | +``` |
| 49 | + |
| 50 | +### 2️⃣ Train the Model |
| 51 | +If needed, retrain the model using: |
| 52 | +```bash |
| 53 | +python scripts/train_model.py |
| 54 | +``` |
| 55 | +The trained model will be saved in the `models/` directory. |
| 56 | + |
| 57 | +### 3️⃣ Run the API Locally |
| 58 | +```bash |
| 59 | +uvicorn app:app --host 0.0.0.0 --port 8000 |
| 60 | +``` |
| 61 | +Test the API using: |
| 62 | +```bash |
| 63 | +curl -X POST "http://localhost:8000/predict" -H "Content-Type: application/json" -d '{"cpu": 80, "memory": 90, "disk": 70}' |
| 64 | +``` |
| 65 | + |
| 66 | +--- |
| 67 | + |
| 68 | +## 🐳 Dockerization & Kubernetes Deployment |
| 69 | + |
| 70 | +### 🏗️ Build & Run with Docker |
| 71 | +1. **Build the Docker image** |
| 72 | +```bash |
| 73 | +docker build -t pavithra/k8s-failure-predictor:v1 . |
| 74 | +``` |
| 75 | +2. **Run the container** |
| 76 | +```bash |
| 77 | +docker run -p 8000:8000 pavithra/k8s-failure-predictor:v1 |
| 78 | +``` |
| 79 | +3. **Push to Docker Hub** |
| 80 | +```bash |
| 81 | +docker push pavithra/k8s-failure-predictor:v1 |
| 82 | +``` |
| 83 | + |
| 84 | +### ☸️ Deploy to Kubernetes |
| 85 | +1. **Apply deployment and service manifests** |
| 86 | +```bash |
| 87 | +kubectl apply -f deployment/deployment.yaml |
| 88 | +kubectl apply -f deployment/service.yaml |
| 89 | +``` |
| 90 | +2. **Check running pods** |
| 91 | +```bash |
| 92 | +kubectl get pods |
| 93 | +``` |
| 94 | +3. **Expose the service** |
| 95 | +```bash |
| 96 | +kubectl port-forward service/k8s-failure-predictor 8000:8000 |
| 97 | +``` |
| 98 | +4. **Test the API** |
| 99 | +```bash |
| 100 | +curl -X POST "http://localhost:8000/predict" -H "Content-Type: application/json" -d '{"cpu": 85, "memory": 95, "disk": 80}' |
| 101 | +``` |
| 102 | + |
| 103 | +--- |
| 104 | + |
| 105 | +## 📊 Model Performance |
| 106 | +### ✅ Accuracy Scores: |
| 107 | +- **Train Accuracy:** 86.80% |
| 108 | +- **Test Accuracy:** 68.88% |
| 109 | + |
| 110 | +### 📉 Classification Report: |
| 111 | +| Class | Precision | Recall | F1-Score | Support | |
| 112 | +|-------|-----------|--------|----------|---------| |
| 113 | +| **0** (No Failure) | 0.82 | 0.64 | 0.72 | 904 | |
| 114 | +| **1** (Failure) | 0.56 | 0.77 | 0.65 | 542 | |
| 115 | + |
| 116 | +**Macro Avg:** 69% | **Weighted Avg:** 73% |
| 117 | + |
| 118 | +--- |
| 119 | + |
| 120 | +## 📌 Future Improvements |
| 121 | +✅ **Enhance Feature Engineering** – Incorporate more time-series trends 📈 |
| 122 | +✅ **Optimize Hyperparameters** – Use Bayesian optimization 🔬 |
| 123 | +✅ **Deploy on Cloud** – Host on AWS/GCP/Azure ☁️ |
| 124 | +✅ **Improve Model Interpretability** – Use SHAP/LIME 📊 |
| 125 | + |
| 126 | +--- |
| 127 | + |
| 128 | +## 🤝 Contributing |
| 129 | +Feel free to fork, contribute, and improve the model. PRs are welcome! 🎯 |
| 130 | + |
| 131 | +--- |
| 132 | + |
| 133 | +## 🏆 Acknowledgments |
| 134 | +Thanks to the open-source community and Kubernetes practitioners for providing valuable datasets and insights! |
| 135 | + |
0 commit comments