Skip to content

Different Layers, Same results #17

@rahimentezari

Description

@rahimentezari

I trained a VGG-16 for CIFAR10, 32x32 pixels. When I run netdissect for different Conv layers, e.g. conv1 and conv13, I got the same results. Should it be like this?
I got the same results for both :
(['grass', 'sky', 'zigzagged', 'striped', 'chequered', 'banded', 'waffled', 'freckled', 'red-c', 'blue-c'], [1, 1, 19, 14, 14, 10, 1, 1, 1, 1], [('object', 2), ('scene', 0), ('part', 0), ('material', 0), ('texture', 6), ('color', 2)], 100, 12, True, 'result/pytorch_vgg16_cifar10/html/image/conv1-bargraph.svg')

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions