Skip to content

Commit 619c276

Browse files
author
““SupermeLiu
committed
v0.5
1 parent 35e6298 commit 619c276

File tree

1 file changed

+25
-6
lines changed

1 file changed

+25
-6
lines changed

README.md

Lines changed: 25 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -12,43 +12,62 @@ In this paper, we propose a novel strategy of using two-stage generative models
1212

1313
### Prerequisites
1414

15-
* Linux
16-
* NVIDIA GPU
17-
* TensorFlow==1.15.0
15+
- Linux
16+
- NVIDIA GPU
17+
- TensorFlow==1.15.0
1818

1919
### Installation
2020

21-
Create virtual environment and install required packages:
21+
- Clone this repo:
22+
23+
```python
24+
git clone https://github.com/CSDLLab/MPGAN.git
25+
cd MPGAN
26+
```
27+
28+
- Create virtual environment and install required packages:
2229

2330
```python
2431
conda create -n mpgan
2532
conda activate mpgan
2633
conda install --yes --file requirements.txt
2734
```
2835

36+
2937
## Usage
3038

3139
### First Stage: Neuron Image Simulator
3240

41+
- Use first-stage simulator to generate the fake images:
42+
43+
3344
```python
3445
python 1_simulator.py
3546
```
3647

37-
![image-2](imgs/2.png)
48+
- The output images are shown in follow figure:
49+
50+
![image-2](imgs/2.PNG)
3851

3952
### Second Stage: GAN
4053

54+
- Use second-stage MPGAN to refine the fake images:
55+
4156
```python
4257
python 2_mpgan.py
4358
```
4459

4560
## Data
4661

62+
Due to the size of each individual stack, which can be as big as $512\times 512\times 512$, it is not practical to input the whole stack into a deep neural network. Instead, we use small patches with the size of $64 \times 64\times 32$. To exclude patches containing too few foreground voxels, we use a sliding window to traverse each stack.
4763

64+
- Use OTSU to segment the image.
4865

49-
![image-3](imgs/3.png)
66+
- Skeletonize the neuron image to get the neuron centerline.
5067

68+
- Slide the window to traverse the image on centerline to ensure that the neuron branches are centered in the training data.
5169

70+
![image-3](imgs/3.PNG)
5271

5372

5473
## Reference

0 commit comments

Comments
 (0)