Skip to content

Commit 0ebded3

Browse files
authored
Merge pull request #213 from troyraen/raen/cleanup-syntax
Clean up figures
2 parents d5491cd + 78babe5 commit 0ebded3

File tree

1 file changed

+8
-13
lines changed

1 file changed

+8
-13
lines changed

tutorials/parquet-catalog-demos/euclid-q1-hats/4-euclid-q1-hats-magnitudes.md

Lines changed: 8 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -66,6 +66,9 @@ import pyarrow.compute as pc # Filter dataset
6666
import pyarrow.dataset # Load the dataset
6767
import pyarrow.fs # Simple S3 filesystem pointer
6868
import pyarrow.parquet # Load the schema
69+
70+
# Increase font size in figures.
71+
plt.rcParams.update({"font.size": 14})
6972
```
7073

7174
```{code-cell} ipython3
@@ -217,10 +220,6 @@ Let's visualize the template-fit magnitude distributions as a function of PHZ cl
217220
Since the template-fit photometry is recommended for extended objects, we'll separate the point-like objects.
218221
[Euclid Collaboration: Tucci et al., 2025](https://arxiv.org/pdf/2503.15306) defines point-like objects as having `MUMAX_MINUS_MAG < -2.5`.
219222

220-
```{code-cell} ipython3
221-
222-
```
223-
224223
```{code-cell} ipython3
225224
---
226225
jupyter:
@@ -250,20 +249,20 @@ for (class_name, class_ids), class_color in zip(classes.items(), class_colors):
250249
label = "+Galaxy" if class_name != "Galaxy" else "+any"
251250
# Of those objects, restrict to the ones that are point-like.
252251
classpt_df = class_df.loc[class_df[MUMAX_MINUS_MAG] < -2.5]
253-
pt_label = f"{label} and point-like"
252+
pt_label = f"{label} (point-like)"
254253
# Plot histograms for both sets of objects.
255254
for ax, band in zip(axs, bands):
256255
ax.hist(class_df[band], label=label, linestyle=":", **hist_kwargs)
257256
ax.hist(classpt_df[band], linestyle="-.", label=pt_label, **hist_kwargs)
258257
259258
# Add axis labels, etc.
260-
for ax in axes[:, 0]:
259+
for ax, loc in zip(axes[:, 0], [2, 3, 2]):
260+
ax.legend(loc=loc)
261261
ax.set_ylabel("Counts")
262-
ax.legend(framealpha=0.2, loc=2)
263262
for axs, band in zip(axes.transpose(), bands):
264263
axs[0].set_title(band.split()[0])
265264
axs[-1].set_xlabel(band)
266-
plt.title("Magnitude Distributions by Object Type")
265+
fig.suptitle("Magnitude Distributions by Object Type")
267266
plt.tight_layout()
268267
```
269268

@@ -293,10 +292,6 @@ This comparison reveals systematic offsets that depend on factors including morp
293292

294293
This figure is inspired by Romelli Fig. 6 (top panel).
295294

296-
```{code-cell} ipython3
297-
298-
```
299-
300295
```{code-cell} ipython3
301296
---
302297
jupyter:
@@ -358,7 +353,7 @@ for i, ax in enumerate(axes.flatten()):
358353
ax.set_title("Point-like objects")
359354
if i > 2:
360355
ax.set_xlabel(I_MAG)
361-
plt.title("Magnitude Differences: Template-fit - Aperture")
356+
fig.suptitle("Magnitude Offsets (Template fit - Aperture)")
362357
plt.tight_layout()
363358
```
364359

0 commit comments

Comments
 (0)