Skip to content

Commit 1ddc1d9

Browse files
committed
Remove tester notes and uniforming author info with the rest of the notebooks
1 parent 70d4b96 commit 1ddc1d9

File tree

4 files changed

+31
-132
lines changed

4 files changed

+31
-132
lines changed

tutorials/euclid_access/1_Euclid_intro_MER_images.md

Lines changed: 9 additions & 44 deletions
Original file line numberDiff line numberDiff line change
@@ -26,7 +26,6 @@ By the end of this tutorial, you will:
2626
- Use matplotlib to plot a grid of cutouts.
2727
- Identify sources in the cutouts and make basic measurements.
2828

29-
3029
+++
3130

3231
## Introduction
@@ -41,13 +40,9 @@ MER mosaic images are all the images from Level 2 images in different filters ma
4140

4241
+++
4342

44-
### NOTE to testers -- please log in to IPAC vpn to access the IRSAdev data. After the Q1 data release, we will not need to use the IPAC VPN or the irsadev site.
45-
46-
+++
47-
4843
## Data volume
4944

50-
Each MER image is approximately 1.47 GB. On Caltech wifi this takes between 1-5 mins to download.
45+
Each MER image is approximately 1.47 GB. Downloading can take some time.
5146

5247
+++
5348

@@ -140,12 +135,12 @@ print('There are',len(df_im_euclid),'MER images of this object/MER tile.')
140135
Note that 'access_estsize' is in units of kb
141136

142137
```{code-cell} ipython3
143-
filename=df_im_euclid[df_im_euclid['energy_bandpassname']=='VIS']['access_url'].to_list()[0]
144-
filesize=df_im_euclid[df_im_euclid['energy_bandpassname']=='VIS']['access_estsize'].to_list()[0]/1000000
138+
filename = df_im_euclid[df_im_euclid['energy_bandpassname']=='VIS']['access_url'].to_list()[0]
139+
filesize = df_im_euclid[df_im_euclid['energy_bandpassname']=='VIS']['access_estsize'].to_list()[0]/1000000
145140
146141
print(filename)
147142
148-
print('Please note this image is',filesize,'GB. With 230 Mbps internet download speed, it takes about 1 minute to download.')
143+
print(f'Please note this image is {filesize} GB. With 230 Mbps internet download speed, it takes about 1 minute to download.')
149144
```
150145

151146
### For future notebooks, extract the tileID of this image from the filename and extract the tileID
@@ -233,7 +228,7 @@ print(urls)
233228
#####################
234229
```
235230

236-
Create an array with the instrument and filter name so we can add this to the plots.
231+
Create an array with the instrument and filter name so we can add this to the plots.
237232

238233
```{code-cell} ipython3
239234
df_im_euclid.loc[:, "filters"] = df_im_euclid["instrument_name"] + "_" + df_im_euclid["energy_bandpassname"]
@@ -294,12 +289,11 @@ for url in urls:
294289
## Combine all cutouts into a single HDUList and display information
295290
final_hdulist = fits.HDUList(cutout_list)
296291
final_hdulist.info()
297-
298292
```
299293

300294
## 3. Visualize multiwavelength Euclid Q1 MER cutouts
301295

302-
Need to determine the number of images for the grid layout, then we iterate through the images and plot each one.
296+
Need to determine the number of images for the grid layout, then we iterate through the images and plot each one.
303297

304298
```{code-cell} ipython3
305299
num_images = len(final_hdulist)
@@ -418,18 +412,6 @@ for i in range(len(sources_thr)):
418412
ax.add_artist(e)
419413
```
420414

421-
```{code-cell} ipython3
422-
423-
```
424-
425-
```{code-cell} ipython3
426-
427-
```
428-
429-
## Exercise
430-
431-
+++
432-
433415
### Optional -- Access the data from the ESA archive website directly
434416

435417
+++
@@ -441,27 +423,10 @@ for i in range(len(sources_thr)):
441423

442424
+++
443425

444-
## Additional Resources
445-
446-
If you have any issues accessing data from the archives, please contact the helpdesk directly: IRSA ([email protected]) and ESA (https://support.cosmos.esa.int/euclid).
447-
448-
+++
449-
450426
## About this Notebook
451427

452-
**Author(s)**: Tiffany Meshkat <br>
453-
**Keyword(s)**: Euclid, Q1, MER mosaics <br>
454-
**First published**: March 19, 2025 <br>
455-
**Last updated**: March 19, 2025
456-
457-
```{code-cell} ipython3
428+
**Author**: Tiffany Meshkat (IPAC Scientist)
458429

459-
```
430+
**Updated**: March 19, 2025
460431

461-
```{code-cell} ipython3
462-
463-
```
464-
465-
```{code-cell} ipython3
466-
467-
```
432+
**Contact:** [the IRSA Helpdesk](https://irsa.ipac.caltech.edu/docs/help_desk.html) with questions or reporting problems.

tutorials/euclid_access/2_Euclid_intro_MER_catalog.md

Lines changed: 14 additions & 42 deletions
Original file line numberDiff line numberDiff line change
@@ -39,10 +39,6 @@ Each entry in the MER catalog is a single source containing all its photometry f
3939

4040
+++
4141

42-
### NOTE to testers -- please log in to IPAC vpn to access the IRSAdev data. After the Q1 data release, we will not need to use the IPAC VPN or the irsadev site.
43-
44-
+++
45-
4642
## Imports
4743

4844
```{code-cell} ipython3
@@ -77,11 +73,7 @@ for tablename in tables.keys():
7773
### Choose the Euclid MER table
7874

7975
```{code-cell} ipython3
80-
table_mer= 'euclid_q1_mer_catalogue'
81-
```
82-
83-
```{code-cell} ipython3
84-
76+
table_mer = 'euclid_q1_mer_catalogue'
8577
```
8678

8779
### Learn some information about the table:
@@ -95,7 +87,7 @@ print(len(columns))
9587

9688
```{code-cell} ipython3
9789
for col in columns:
98-
print(f'{f"{col.name}":30s} {col.unit} {col.description}') ## Currently no descriptions
90+
print(f'{f"{col.name}":30s} {col.unit} {col.description}')
9991
```
10092

10193
### Define the following ADQL query to find the first 10k stars in the MER catalog
@@ -105,18 +97,16 @@ Since we are just using the MER catalog alone, it does not have a column for cla
10597
Set all the fluxes to be greater than 0 so the object is detected in all four Euclid MER mosaic images
10698

10799
```{code-cell} ipython3
108-
adql_stars = f"SELECT TOP 10000 mer.ra, mer.dec, mer.flux_vis_psf, mer.fluxerr_vis_psf, mer.flux_y_templfit,mer.fluxerr_y_templfit, \
109-
mer.flux_j_templfit, mer.fluxerr_j_templfit, mer.flux_h_templfit, mer.fluxerr_h_templfit, mer.point_like_prob, mer.extended_prob \
110-
FROM {table_mer} AS mer \
111-
WHERE mer.flux_vis_psf > 0 \
112-
AND mer.flux_y_templfit > 0 \
113-
AND mer.flux_j_templfit > 0 \
114-
AND mer.flux_h_templfit > 0 \
115-
AND mer.point_like_flag = 1 \
116-
"
117-
100+
adql_stars = ("SELECT TOP 10000 mer.ra, mer.dec, mer.flux_vis_psf, mer.fluxerr_vis_psf, mer.flux_y_templfit,mer.fluxerr_y_templfit, "
101+
"mer.flux_j_templfit, mer.fluxerr_j_templfit, mer.flux_h_templfit, mer.fluxerr_h_templfit, mer.point_like_prob, mer.extended_prob "
102+
f"FROM {table_mer} AS mer "
103+
"WHERE mer.flux_vis_psf > 0 "
104+
"AND mer.flux_y_templfit > 0 "
105+
"AND mer.flux_j_templfit > 0 "
106+
"AND mer.flux_h_templfit > 0 "
107+
"AND mer.point_like_flag = 1 ")
118108
119-
## Run the query
109+
# Run the query
120110
121111
result_stars = service.search(adql_stars)
122112
```
@@ -152,7 +142,6 @@ plt.ylabel('Y')
152142
plt.xlim(-10,10)
153143
plt.ylim(10,35)
154144
plt.title('10k Stars in MER catalog -- IRSA')
155-
156145
```
157146

158147
## Exercise
@@ -249,27 +238,10 @@ mer.DEBLENDED_FLAG, mer.BLENDED_PROB, mer.BINARY_FLAG, mer. POINT_LIKE_FLAG, mer
249238
____________________________
250239
```
251240

252-
```{code-cell} ipython3
253-
254-
```
255-
256-
```{code-cell} ipython3
257-
258-
```
259-
260-
## Additional Resources
261-
262-
If you have any issues accessing data from the archives, please contact the helpdesk directly: IRSA ([email protected]) and ESA (https://support.cosmos.esa.int/euclid).
263-
264-
+++
265-
266241
## About this Notebook
267242

268-
**Author(s)**: Tiffany Meshkat <br>
269-
**Keyword(s)**: Euclid, Q1, MER catalog <br>
270-
**First published**: March 19, 2025 <br>
271-
**Last updated**: March 19, 2025
243+
**Author**: Tiffany Meshkat (IPAC Scientist)
272244

273-
```{code-cell} ipython3
245+
**Updated**: March 19, 2025
274246

275-
```
247+
**Contact:** [the IRSA Helpdesk](https://irsa.ipac.caltech.edu/docs/help_desk.html) with questions or reporting problems.

tutorials/euclid_access/3_Euclid_intro_1D_spectra.md

Lines changed: 3 additions & 25 deletions
Original file line numberDiff line numberDiff line change
@@ -43,10 +43,6 @@ This notebook provides an introduction to the SIR 1D spectra released as part of
4343

4444
+++
4545

46-
### NOTE to testers -- please log in to IPAC vpn to access the IRSAdev data. After the Q1 data release, we will not need to use the IPAC VPN or the irsadev site.
47-
48-
+++
49-
5046
## Imports
5147

5248
```{code-cell} ipython3
@@ -78,7 +74,6 @@ Search for all tables in IRSA labeled as euclid
7874
```{code-cell} ipython3
7975
service = vo.dal.TAPService("https://irsadev.ipac.caltech.edu/TAP")
8076
81-
8277
tables = service.tables
8378
for tablename in tables.keys():
8479
if "tap_schema" not in tablename and "euclid" in tablename:
@@ -144,7 +139,6 @@ Currently IRSA has the spectra stored in very large files containing multiple (1
144139
145140
# hdul = fits.open(BytesIO(response.content)) # Open FITS file from memory
146141
# hdul.info() # Show file info
147-
148142
```
149143

150144
### Open the large FITS file without loading it entirely into memory, pulling out just the extension we want for the 1D spectra of our object
@@ -173,10 +167,6 @@ plt.ylabel('Flux'+dat['SIGNAL'].unit.to_string('latex_inline'))
173167
plt.title(obj_id)
174168
```
175169

176-
```{code-cell} ipython3
177-
178-
```
179-
180170
## Exercise
181171

182172
+++
@@ -198,31 +188,19 @@ ON phz_class.object_id=spec.source_id
198188
WHERE phz_class.phz_classification = 2
199189
```
200190

201-
202191
- This shows the first 10 sources with spectra in the list.
203192
- Click the link/chain
204193
- Make sure "source_id" is selected under "IDs columns"
205194
- Click "show data" then click the download button next to "Spectra -- source_id"
206195

207196
NOTE: You need to unzip the file to get a fits file with the combined spectra. On a mac you can do this by just double clicking the file to unzip.
208197

209-
```{code-cell} ipython3
210-
211-
```
212-
213-
## Additional Resources
214-
215-
If you have any issues accessing data from the archives, please contact the helpdesk directly: IRSA ([email protected]) and ESA (https://support.cosmos.esa.int/euclid).
216-
217198
+++
218199

219200
## About this Notebook
220201

221-
**Author(s)**: Tiffany Meshkat <br>
222-
**Keyword(s)**: Euclid, Q1, 1D spectra <br>
223-
**First published**: March 19, 2025 <br>
224-
**Last updated**: March 19, 2025
202+
**Author**: Tiffany Meshkat (IPAC Scientist)
225203

226-
```{code-cell} ipython3
204+
**Updated**: March 19, 2025
227205

228-
```
206+
**Contact:** [the IRSA Helpdesk](https://irsa.ipac.caltech.edu/docs/help_desk.html) with questions or reporting problems.

tutorials/euclid_access/5_Euclid_intro_SPE_catalog.md

Lines changed: 5 additions & 21 deletions
Original file line numberDiff line numberDiff line change
@@ -37,9 +37,6 @@ These notebooks focus on how to access, download, and process Euclid Q1 data fro
3737

3838
Every one dimensional spectrum is processed through a template and line fitting pipeline, producing several different 'SPE' catalogs. This notebook provides an introduction to the SPE catalogs released as part of Euclid Q1. Other Euclid notebooks show how to use other data products released as part of Euclid Q1.
3939

40-
41-
### NOTE to testers -- please log in to IPAC vpn to access the IRSAdev data. After the Q1 data release, we will not need to use the IPAC VPN or the irsadev site.
42-
4340
+++
4441

4542
## Imports
@@ -69,7 +66,7 @@ import pyvo as vo
6966

7067
## 1. Find the MER Tile ID that corresponds to a given RA and Dec
7168

72-
In this case, choose the coordinates from the first notebook to save time downloading the MER mosaic. Search a radius of 1.5 arcminutes around these coordinates.
69+
In this case, choose the coordinates from the first notebook to save time downloading the MER mosaic. Search a radius of 1.5 arcminutes around these coordinates.
7370

7471
```{code-cell} ipython3
7572
ra = 273.474451
@@ -121,14 +118,6 @@ tileID=re.search(r'TILE\s*(\d{9})', filename).group(1)
121118
print('The MER tile ID for this object is :',tileID)
122119
```
123120

124-
```{code-cell} ipython3
125-
126-
```
127-
128-
```{code-cell} ipython3
129-
130-
```
131-
132121
## 2. Read in the MER image from IRSA directly
133122

134123
```{code-cell} ipython3
@@ -322,15 +311,10 @@ plt.ylabel('Flux (erg / (Angstrom s cm2))')
322311
plt.title(obj_id)
323312
```
324313

325-
## Additional Resources
326-
327-
If you have any issues accessing data from the archives, please contact the helpdesk directly: IRSA ([email protected]) and ESA (https://support.cosmos.esa.int/euclid).
314+
## About this Notebook
328315

329-
+++
316+
**Author**: Tiffany Meshkat (IPAC Scientist)
330317

331-
## About this Notebook
318+
**Updated**: March 19, 2025
332319

333-
**Author(s)**: Tiffany Meshkat <br>
334-
**Keyword(s)**: Euclid, Q1, spe catalog <br>
335-
**First published**: March 19, 2025 <br>
336-
**Last updated**: March 19, 2025
320+
**Contact:** [the IRSA Helpdesk](https://irsa.ipac.caltech.edu/docs/help_desk.html) with questions or reporting problems.

0 commit comments

Comments
 (0)