@@ -19,7 +19,7 @@ kernelspec:
1919
2020+++
2121
22- By the end of this tutorial, you will:
22+ By the end of this tutorial, you will:
2323- Understand the basic characteristics of Euclid Q1 MER mosaics.
2424- How do download full MER mosaics.
2525- How to make smaller cutouts of MER mosaics.
@@ -82,8 +82,8 @@ search_radius = 10 * u.arcsec
8282coord = SkyCoord.from_name('HD 168151')
8383```
8484
85- Use IRSA to search for all Euclid data on this target.
86- This searches specifically in the euclid_DpdMerBksMosaic "collection" which is the MER images and catalogs.
85+ Use IRSA to search for all Euclid data on this target.
86+ This searches specifically in the euclid_DpdMerBksMosaic "collection" which is the MER images and catalogs.
8787This query will return any image with pixels that overlap the search region.
8888
8989``` {code-cell} ipython3
@@ -157,11 +157,12 @@ print(hdu_mer_irsa.info())
157157head_mer_irsa = hdu_mer_irsa[0].header
158158```
159159
160- Now you've downloaded this large file, if you would like to save it to disk, uncomment the following cell
160+ Now you've downloaded this large file, if you would like to save it to disk, uncomment the following cell.
161+ Please also define a suitable download directory; by default it will be ` data ` at the same location as your notebook.
161162
162163``` {code-cell} ipython3
163- # download_path='/Users/meshkat/ data/Euclid/ '
164- # hdu_mer_irsa.writeto(download_path+'./ MER_image_VIS.fits', overwrite=True)
164+ # download_path = ' data'
165+ # hdu_mer_irsa.writeto(os.path.join( download_path, ' MER_image_VIS.fits') , overwrite=True)
165166```
166167
167168Have a look at the header information for this image
@@ -229,8 +230,8 @@ filters
229230## How large do you want the image cutout to be?
230231im_cutout= 1.0 * u.arcmin
231232
232- ## What is the center of the cutout?
233- ## For now choosing a random location on the image
233+ ## What is the center of the cutout?
234+ ## For now choosing a random location on the image
234235## because the star itself is saturated
235236ra = 273.8667
236237dec = 64.525
@@ -253,14 +254,14 @@ for url in urls:
253254 print(f"Opened {url}")
254255
255256 ## Store the header
256- header = hdu[0].header
257+ header = hdu[0].header
257258
258259 ## Read in the cutout of the image that you want
259260 cutout_data = Cutout2D(hdu[0].section, position=coords_cutout, size=im_cutout, wcs=WCS(hdu[0].header))
260261
261262 ## Close the file
262263 # hdu.close()
263-
264+
264265 ## Define a new fits file based on this smaller cutout, with accurate WCS based on the cutout size
265266 new_hdu = fits.PrimaryHDU(data=cutout_data.data, header=header)
266267 new_hdu.header.update(cutout_data.wcs.to_header())
@@ -280,7 +281,7 @@ Need to determine the number of images for the grid layout, then we iterate thro
280281``` {code-cell} ipython3
281282num_images = len(final_hdulist)
282283columns = 4
283- rows = -(-num_images // columns)
284+ rows = -(-num_images // columns)
284285
285286fig, axes = plt.subplots(rows, columns, figsize=(4 * columns, 4 * rows), subplot_kw={'projection': WCS(final_hdulist[0].header)})
286287axes = axes.flatten()
@@ -310,7 +311,7 @@ filters
310311```
311312
312313``` {code-cell} ipython3
313- filt_index = np.where(filters == 'VIS')[0][0]
314+ filt_index = np.where(filters == 'VIS')[0][0]
314315
315316img1=final_hdulist[filt_index].data
316317```
@@ -324,7 +325,7 @@ Need to do some initial steps (swap byte order) with the cutout to prevent sep f
324325
325326``` {code-cell} ipython3
326327img2 = img1.byteswap().view(img1.dtype.newbyteorder())
327- c_contiguous_data = np.array(img2, dtype=np.float32)
328+ c_contiguous_data = np.array(img2, dtype=np.float32)
328329
329330bkg = sep.Background(c_contiguous_data)
330331
0 commit comments