@@ -187,7 +187,8 @@ seip_results["cloud_access"][:5]
187187``` {code-cell} ipython3
188188# find the first mosaic file in the results
189189# use json to convert the string containing the cloud info to a dictionary
190- seip_mosaic_cloud_info = json.loads([i for i in seip_results["cloud_access"] if ".mosaic.fits" in i][0])
190+ mosaics = [i for i in seip_results["cloud_access"] if ".mosaic.fits" in i]
191+ seip_mosaic_cloud_info = json.loads(mosaics[0])
191192
192193# extract
193194BUCKET_NAME = seip_mosaic_cloud_info["aws"]["bucket_name"]
@@ -218,7 +219,8 @@ In addition, use the HDU `section` method in place of the usual `data` to avoid
218219(See [ Obtaining subsets from cloud-hosted FITS files] ( https://docs.astropy.org/en/stable/io/fits/usage/cloud.html#fits-io-cloud ) .)
219220
220221``` {code-cell} ipython3
221- with astropy.io.fits.open(f"s3://{BUCKET_NAME}/{image_key}", fsspec_kwargs={"anon": True}) as hdul:
222+ s3_image_path = f"s3://{BUCKET_NAME}/{image_key}"
223+ with astropy.io.fits.open(s3_image_path, fsspec_kwargs={"anon": True}) as hdul:
222224 cutout = Cutout2D(hdul[0].section, position=coords, size=size, wcs=WCS(hdul[0].header))
223225```
224226
@@ -261,7 +263,8 @@ fs = pyarrow.fs.S3FileSystem(region=BUCKET_REGION, anonymous=True)
261263
262264``` {code-cell} ipython3
263265# load the schema from the "_common_metadata" file
264- schema = pyarrow.dataset.parquet_dataset(f"{parquet_root}/_common_metadata", filesystem=fs).schema
266+ s3_schema_path = f"{parquet_root}/_common_metadata"
267+ schema = pyarrow.dataset.parquet_dataset(s3_schema_path, filesystem=fs).schema
265268
266269# the full schema can be quite large since catalogs often have hundreds of columns
267270# but if you do want to look at the entire schema, uncomment the next line
@@ -304,7 +307,9 @@ Find the partitions (HEALPix pixel indexes) that overlap the polygon:
304307
305308``` {code-cell} ipython3
306309k = 5
307- polygon_pixels = hpgeom.query_polygon(a=corners[0], b=corners[1], nside=hpgeom.order_to_nside(k), inclusive=True)
310+ polygon_pixels = hpgeom.query_polygon(
311+ a=corners[0], b=corners[1], nside=hpgeom.order_to_nside(k), inclusive=True
312+ )
308313```
309314
310315Query:
0 commit comments