@@ -51,7 +51,7 @@ If you have questions about this notebook, please contact the [IRSA helpdesk](ht
5151
5252``` {code-cell} ipython3
5353# Uncomment the next line to install dependencies if needed.
54- # !pip install requests matplotlib pandas 'astropy>=5.3' pyvo fsspec firefly_client
54+ # !pip install requests matplotlib pandas 'astropy>=5.3' 'astroquery>=0.4.10' fsspec firefly_client
5555```
5656
5757``` {code-cell} ipython3
@@ -72,7 +72,7 @@ from astropy.visualization import ImageNormalize, PercentileInterval, AsinhStret
7272from astropy.wcs import WCS
7373
7474from firefly_client import FireflyClient
75- import pyvo as vo
75+ from astroquery.ipac.irsa import Irsa
7676```
7777
7878## 1. Find the MER Tile ID that corresponds to a given RA and Dec
@@ -92,9 +92,7 @@ coord = SkyCoord(ra, dec, unit='deg', frame='icrs')
9292This searches specifically in the euclid_DpdMerBksMosaic "collection" which is the MER images and catalogs.
9393
9494``` {code-cell} ipython3
95- irsa_service= vo.dal.sia2.SIA2Service('https://irsa.ipac.caltech.edu/SIA')
96-
97- image_table = irsa_service.search(pos=(coord, search_radius), collection='euclid_DpdMerBksMosaic').to_table()
95+ image_table = Irsa.query_sia(pos=(coord, search_radius), collection='euclid_DpdMerBksMosaic')
9896```
9997
10098``` {note}
@@ -123,47 +121,42 @@ print('The MER tile ID for this object is :',tileID)
123121
124122## 2. Download PHZ catalog from IRSA
125123
126- ``` {code-cell} ipython3
127- ## Use IRSA to search for catalogs
128-
129- service = vo.dal.TAPService("https://irsa.ipac.caltech.edu/TAP")
124+ Use IRSA's TAP to search catalogs
130125
131-
132- ## Search for all tables in IRSA labled as euclid_q1
133- tables = service.tables
134- for tablename in tables.keys():
135- if "tap_schema" not in tablename and "euclid_q1" in tablename:
136- tables[tablename].describe()
126+ ``` {code-cell} ipython3
127+ Irsa.list_catalogs(filter='euclid')
137128```
138129
139130``` {code-cell} ipython3
140- table_mer= 'euclid_q1_mer_catalogue'
141- table_phz= 'euclid_q1_phz_photo_z'
142- table_1dspectra= 'euclid.objectid_spectrafile_association_q1'
131+ table_mer = 'euclid_q1_mer_catalogue'
132+ table_phz = 'euclid_q1_phz_photo_z'
133+ table_1dspectra = 'euclid.objectid_spectrafile_association_q1'
143134```
144135
145- ### Learn some information about the table :
136+ ### Learn some information about the photo-z catalog :
146137
147138- How many columns are there?
148139- List the column names
149140
150141``` {code-cell} ipython3
151- columns = tables[table_phz].columns
152- print(len(columns))
153- ```
154-
155- ``` {code-cell} ipython3
156- for col in columns:
157- print(f'{f"{col.name}":30s} {col.unit} {col.description}') ## Currently no descriptions
142+ columns_info = Irsa.list_columns(catalog=table_phz)
143+ print(len(columns_info))
158144```
159145
146+ ``` {tip}
160147The PHZ catalog contains 67 columns, below are a few highlights:
161148
162149- object_id
163150- flux_vis_unif, flux_y_unif, flux_j_unif, flux_h_unif
164151- median redshift (phz_median)
165152- phz_classification
166153- phz_90_int1, phz_90_int2 (The phz PDF interval containing 90% of the probability, upper and lower values)
154+ ```
155+
156+ ``` {code-cell} ipython3
157+ # Full list of columns and their description
158+ columns_info
159+ ```
167160
168161``` {note}
169162The phz_catalog on IRSA has more columns than it does on the ESA archive.
0 commit comments