Skip to content

Commit 5cd7931

Browse files
committed
Swapping out pyvo for astroquery in PHZ notebook
1 parent 16b1f12 commit 5cd7931

File tree

1 file changed

+19
-26
lines changed

1 file changed

+19
-26
lines changed

tutorials/euclid_access/4_Euclid_intro_PHZ_catalog.md

Lines changed: 19 additions & 26 deletions
Original file line numberDiff line numberDiff line change
@@ -51,7 +51,7 @@ If you have questions about this notebook, please contact the [IRSA helpdesk](ht
5151

5252
```{code-cell} ipython3
5353
# Uncomment the next line to install dependencies if needed.
54-
# !pip install requests matplotlib pandas 'astropy>=5.3' pyvo fsspec firefly_client
54+
# !pip install requests matplotlib pandas 'astropy>=5.3' 'astroquery>=0.4.10' fsspec firefly_client
5555
```
5656

5757
```{code-cell} ipython3
@@ -72,7 +72,7 @@ from astropy.visualization import ImageNormalize, PercentileInterval, AsinhStret
7272
from astropy.wcs import WCS
7373
7474
from firefly_client import FireflyClient
75-
import pyvo as vo
75+
from astroquery.ipac.irsa import Irsa
7676
```
7777

7878
## 1. Find the MER Tile ID that corresponds to a given RA and Dec
@@ -92,9 +92,7 @@ coord = SkyCoord(ra, dec, unit='deg', frame='icrs')
9292
This searches specifically in the euclid_DpdMerBksMosaic "collection" which is the MER images and catalogs.
9393

9494
```{code-cell} ipython3
95-
irsa_service= vo.dal.sia2.SIA2Service('https://irsa.ipac.caltech.edu/SIA')
96-
97-
image_table = irsa_service.search(pos=(coord, search_radius), collection='euclid_DpdMerBksMosaic').to_table()
95+
image_table = Irsa.query_sia(pos=(coord, search_radius), collection='euclid_DpdMerBksMosaic')
9896
```
9997

10098
```{note}
@@ -123,47 +121,42 @@ print('The MER tile ID for this object is :',tileID)
123121

124122
## 2. Download PHZ catalog from IRSA
125123

126-
```{code-cell} ipython3
127-
## Use IRSA to search for catalogs
128-
129-
service = vo.dal.TAPService("https://irsa.ipac.caltech.edu/TAP")
124+
Use IRSA's TAP to search catalogs
130125

131-
132-
## Search for all tables in IRSA labled as euclid_q1
133-
tables = service.tables
134-
for tablename in tables.keys():
135-
if "tap_schema" not in tablename and "euclid_q1" in tablename:
136-
tables[tablename].describe()
126+
```{code-cell} ipython3
127+
Irsa.list_catalogs(filter='euclid')
137128
```
138129

139130
```{code-cell} ipython3
140-
table_mer= 'euclid_q1_mer_catalogue'
141-
table_phz= 'euclid_q1_phz_photo_z'
142-
table_1dspectra= 'euclid.objectid_spectrafile_association_q1'
131+
table_mer = 'euclid_q1_mer_catalogue'
132+
table_phz = 'euclid_q1_phz_photo_z'
133+
table_1dspectra = 'euclid.objectid_spectrafile_association_q1'
143134
```
144135

145-
### Learn some information about the table:
136+
### Learn some information about the photo-z catalog:
146137

147138
- How many columns are there?
148139
- List the column names
149140

150141
```{code-cell} ipython3
151-
columns = tables[table_phz].columns
152-
print(len(columns))
153-
```
154-
155-
```{code-cell} ipython3
156-
for col in columns:
157-
print(f'{f"{col.name}":30s} {col.unit} {col.description}') ## Currently no descriptions
142+
columns_info = Irsa.list_columns(catalog=table_phz)
143+
print(len(columns_info))
158144
```
159145

146+
```{tip}
160147
The PHZ catalog contains 67 columns, below are a few highlights:
161148
162149
- object_id
163150
- flux_vis_unif, flux_y_unif, flux_j_unif, flux_h_unif
164151
- median redshift (phz_median)
165152
- phz_classification
166153
- phz_90_int1, phz_90_int2 (The phz PDF interval containing 90% of the probability, upper and lower values)
154+
```
155+
156+
```{code-cell} ipython3
157+
# Full list of columns and their description
158+
columns_info
159+
```
167160

168161
```{note}
169162
The phz_catalog on IRSA has more columns than it does on the ESA archive.

0 commit comments

Comments
 (0)