Skip to content

Commit e748759

Browse files
committed
Shortening title for TOC
1 parent 4d72c6c commit e748759

File tree

1 file changed

+6
-6
lines changed

1 file changed

+6
-6
lines changed

tutorials/cosmodc2/cosmoDC2_TAP_access.md

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -14,11 +14,11 @@ kernelspec:
1414

1515

1616

17-
This tutorial demonstrates how to access the CosmoDC2 Mock V1 catalogs. More information about these catalogs can be found here: https://irsa.ipac.caltech.edu/Missions/cosmodc2.html
17+
# CosmoDC2 Mock v1 catalogs with IRSA TAP
1818

19-
# Use IRSA's Virtual Observatory Table Access Protocol (TAP) Service to access these catalogs.
19+
This tutorial demonstrates how to access the CosmoDC2 Mock V1 catalogs. More information about these catalogs can be found here: https://irsa.ipac.caltech.edu/Missions/cosmodc2.html
2020

21-
This catalog can be accessed through IRSA's Table Access Protocol (TAP) service. See https://www.ivoa.net/documents/TAP/ for details on the protocol. This service can be accessed through Python using the pvyo library.
21+
These catalogs can be accessed through IRSA's Virtual Ovservatory Table Access Protocol (TAP) service. See https://www.ivoa.net/documents/TAP/ for details on the protocol. This service can be accessed through Python using the PyVO library.
2222

2323
```{code-cell} ipython3
2424
import pyvo as vo
@@ -62,7 +62,7 @@ tablename = 'cosmodc2mockv1_heavy'
6262
With TAP, you can query catalogs with constraints specified in IVOA Astronomical Data Query Language (ADQL; https://www.ivoa.net/documents/latest/ADQL.html), which is based on SQL.
6363

6464
```{code-cell} ipython3
65-
# For example, this snippet of ADQL counts the number of elements in
65+
# For example, this snippet of ADQL counts the number of elements in
6666
# the redshift column of the table we chose.
6767
adql = f"SELECT count(redshift) FROM {tablename}"
6868
adql
@@ -131,7 +131,7 @@ import matplotlib.pyplot as plt
131131
132132
num_bins = 20
133133
# the histogram of the data
134-
n, bins, patches = plt.hist(cone_results['redshift'], num_bins,
134+
n, bins, patches = plt.hist(cone_results['redshift'], num_bins,
135135
facecolor='blue', alpha = 0.5)
136136
plt.xlabel('Redshift')
137137
plt.ylabel('Number')
@@ -159,7 +159,7 @@ len(results['mag_true_r_sdss_z0'])
159159
```
160160

161161
```{code-cell} ipython3
162-
# Since this results in almost 4 million galaxies,
162+
# Since this results in almost 4 million galaxies,
163163
# we will construct a 2D histogram rather than a scatter plot.
164164
plt.hist2d(results['mag_true_r_sdss_z0'], results['mag_true_g_sdss_z0']-results['mag_true_r_sdss_z0'],
165165
bins=200, cmap='plasma', cmax=500)

0 commit comments

Comments
 (0)