@@ -48,7 +48,7 @@ Other Euclid notebooks show how to use other data products released as part of E
4848
4949``` {code-cell} ipython3
5050# Uncomment the next line to install dependencies if needed
51- # !pip install matplotlib pandas astropy pyvo
51+ # !pip install matplotlib pandas astropy>=6.0 pyvo
5252```
5353
5454``` {code-cell} ipython3
@@ -124,25 +124,25 @@ print('The MER tile ID for this object is :',tileID)
124124Note this file is about 1.46 GB
125125
126126``` {code-cell} ipython3
127- fname = download_file(filename, cache=True)
128- hdu_mer_irsa = fits.open(fname)
129- head_mer_irsa = hdu_mer_irsa[0].header
127+ # fname = download_file(filename, cache=True)
128+ # hdu_mer_irsa = fits.open(fname)
129+ # head_mer_irsa = hdu_mer_irsa[0].header
130130
131- print(hdu_mer_irsa.info())
131+ # print(hdu_mer_irsa.info())
132132```
133133
134134#### Extract just the primary image
135135
136136``` {code-cell} ipython3
137- im_mer_irsa=hdu_mer_irsa[0].data
137+ # im_mer_irsa=hdu_mer_irsa[0].data
138138```
139139
140140#### Make a quick and simple plot to show the full MER image, with its large FOV
141141
142142``` {code-cell} ipython3
143- plt.imshow(im_mer_irsa, cmap='gray', origin='lower',
144- norm=ImageNormalize(im_mer_irsa, interval=PercentileInterval(99.9), stretch=AsinhStretch()))
145- colorbar = plt.colorbar()
143+ # plt.imshow(im_mer_irsa, cmap='gray', origin='lower',
144+ # norm=ImageNormalize(im_mer_irsa, interval=PercentileInterval(99.9), stretch=AsinhStretch()))
145+ # colorbar = plt.colorbar()
146146```
147147
148148## 3. Download SPE catalog from IRSA directly to this notebook
@@ -162,15 +162,15 @@ for tablename in tables.keys():
162162table_mer= 'euclid_q1_mer_catalogue'
163163table_galaxy_candidates= 'euclid_q1_spectro_zcatalog_spe_galaxy_candidates'
164164table_1dspectra= 'euclid.objectid_spectrafile_association_q1'
165- table_spe = 'euclid_q1_spe_lines_line_features'
165+ table_lines = 'euclid_q1_spe_lines_line_features'
166166```
167167
168168### Learn some information about the table:
169169- How many columns are there?
170170- List the column names
171171
172172``` {code-cell} ipython3
173- columns = tables[table_spe ].columns
173+ columns = tables[table_lines ].columns
174174print(len(columns))
175175```
176176
@@ -205,20 +205,20 @@ Finally we sort the data by descending spe_line_snr_gf to have the largest SNR H
205205
206206``` {code-cell} ipython3
207207adql = f"SELECT DISTINCT mer.object_id,mer.ra, mer.dec, mer.tileid, mer.flux_y_templfit, \
208- spe .spe_line_snr_gf,spe .spe_line_snr_di, spe .spe_line_name, spe .spe_line_central_wl_gf,\
209- spe .spe_line_ew_gf, galaxy.spe_z_err, galaxy.spe_z,galaxy.spe_z_prob, spe .spe_line_flux_gf, spe .spe_line_flux_err_gf \
208+ lines .spe_line_snr_gf,lines .spe_line_snr_di, lines .spe_line_name, lines .spe_line_central_wl_gf,\
209+ lines .spe_line_ew_gf, galaxy.spe_z_err, galaxy.spe_z,galaxy.spe_z_prob, lines .spe_line_flux_gf, lines .spe_line_flux_err_gf \
210210FROM {table_mer} AS mer \
211- JOIN {table_spe } AS spe \
212- ON mer.object_id = spe .object_id \
211+ JOIN {table_lines } AS lines \
212+ ON mer.object_id = lines .object_id \
213213JOIN {table_galaxy_candidates} AS galaxy \
214- ON spe .object_id = galaxy.object_id AND spe .spe_rank = galaxy.spe_rank \
215- WHERE spe .spe_line_snr_gf >5 \
216- AND spe .spe_line_name = 'Halpha' \
214+ ON lines .object_id = galaxy.object_id AND lines .spe_rank = galaxy.spe_rank \
215+ WHERE lines .spe_line_snr_gf >5 \
216+ AND lines .spe_line_name = 'Halpha' \
217217AND mer.tileid = {tileID} \
218218AND galaxy.spe_z_prob > 0.99 \
219219AND galaxy.spe_z BETWEEN 1.4 AND 1.6 \
220- AND spe .spe_line_flux_gf > 2E-16 \
221- ORDER BY spe .spe_line_snr_gf DESC \
220+ AND lines .spe_line_flux_gf > 2E-16 \
221+ ORDER BY lines .spe_line_snr_gf DESC \
222222"
223223
224224# Use TAP with this ADQL string using pyvo
@@ -245,7 +245,7 @@ obj_tab
245245### Pull the spectrum of this object
246246
247247``` {code-cell} ipython3
248- adql_object = f"SELECT * FROM {table_1dspectra} WHERE objectid = {obj_id} AND uri IS NOT NULL "
248+ adql_object = f"SELECT * FROM {table_1dspectra} WHERE objectid = {obj_id}"
249249
250250result2 = service.search(adql_object)
251251df2 = result2.to_table().to_pandas()
@@ -275,19 +275,20 @@ with fits.open(BytesIO(response.content), memmap=True) as hdul:
275275Divide by 10000 to convert from Angstrom to micron
276276
277277``` {code-cell} ipython3
278- wavelengths = obj_2739401293646823742 ['spe_line_central_wl_gf']/10000.
279- line_names = obj_2739401293646823742 ['spe_line_name']
280- snr_gf = obj_2739401293646823742 ['spe_line_snr_gf']
278+ wavelengths = obj_tab ['spe_line_central_wl_gf']/10000.
279+ line_names = obj_tab ['spe_line_name']
280+ snr_gf = obj_tab ['spe_line_snr_gf']
281281
282282plt.plot(df_obj_irsa['WAVELENGTH']/10000., df_obj_irsa['SIGNAL'])
283283
284284for wl, name, snr in zip(np.atleast_1d(wavelengths), np.atleast_1d(line_names), np.atleast_1d(snr_gf)):
285285 plt.axvline(wl, color='b', linestyle='--', alpha=0.3)
286- plt.text(wl+0.02, .1 , name+' SNR='+str(round(snr)), rotation=90, ha='center', va='bottom', fontsize=10)
286+ plt.text(wl+0.02, .2 , name+' SNR='+str(round(snr)), rotation=90, ha='center', va='bottom', fontsize=10)
287287
288288plt.xlabel('Wavelength (microns)')
289- plt.ylabel('Flux (erg / (Angstrom s cm2))')
290- plt.title(obj_id)
289+ plt.ylabel('Flux (erg / (s cm2))')
290+ plt.xlim(1.25, 1.85)
291+ plt.title('Object ID is '+str(obj_id))
291292```
292293
293294## About this Notebook
0 commit comments