|
| 1 | +from argparse import ArgumentParser |
| 2 | +from langchain_core.messages import HumanMessage |
| 3 | + |
| 4 | +from utils import load_question_json, save_answer_json |
| 5 | + |
| 6 | +from tqdm import tqdm |
| 7 | +import uuid |
| 8 | + |
| 9 | +from llm_utils.graph import builder |
| 10 | + |
| 11 | + |
| 12 | +def get_eval_result( |
| 13 | + graph, |
| 14 | + name=None, |
| 15 | + version=None, |
| 16 | + desc="", |
| 17 | + debug=False, |
| 18 | + input_dir="data/questions", |
| 19 | + output_dir="data/q_sql", |
| 20 | +): |
| 21 | + |
| 22 | + if name is None: |
| 23 | + # random name |
| 24 | + name = str(uuid.uuid4()) |
| 25 | + |
| 26 | + if version is None: |
| 27 | + version = "0.0.1" |
| 28 | + |
| 29 | + results = load_question_json(input_dir) |
| 30 | + |
| 31 | + for i, result in tqdm(enumerate(results), desc="Processing results"): |
| 32 | + inputs = [] |
| 33 | + for question in result["questions"]: |
| 34 | + inputs.append( |
| 35 | + { |
| 36 | + "messages": [HumanMessage(content=question)], |
| 37 | + "user_database_env": "duckdb", |
| 38 | + "best_practice_query": "", |
| 39 | + } |
| 40 | + ) |
| 41 | + response = graph.batch(inputs) |
| 42 | + answers = [] |
| 43 | + for res in response: |
| 44 | + refined_input_content = ( |
| 45 | + res["refined_input"].content |
| 46 | + if hasattr(res["refined_input"], "content") |
| 47 | + else res["refined_input"] |
| 48 | + ) |
| 49 | + answers.append( |
| 50 | + { |
| 51 | + "user_database_env": res["user_database_env"], |
| 52 | + "answer_SQL": res["generated_query"], |
| 53 | + "answer_explanation": res["messages"][-1].content, |
| 54 | + "question_refined": refined_input_content, |
| 55 | + "searched_tables": res["searched_tables"], |
| 56 | + } |
| 57 | + ) |
| 58 | + |
| 59 | + # debug 모드일 때 결과를 print로 확인 |
| 60 | + if debug: |
| 61 | + print(f"질문: {result['questions']}") |
| 62 | + print(f"답변: {answers}") |
| 63 | + |
| 64 | + result["answers"] = answers |
| 65 | + result["name"] = name |
| 66 | + result["version"] = version |
| 67 | + result["desc"] = desc |
| 68 | + |
| 69 | + save_answer_json(result, f"{output_dir}/{name}_{version}", i) |
| 70 | + |
| 71 | + |
| 72 | +if __name__ == "__main__": |
| 73 | + parser = ArgumentParser() |
| 74 | + parser.add_argument("--input_dir", type=str, default="data/questions") |
| 75 | + parser.add_argument("--output_dir", type=str, default="data/q_sql") |
| 76 | + parser.add_argument("--name", type=str, default=None) |
| 77 | + parser.add_argument("--version", type=str, default=None) |
| 78 | + parser.add_argument("--desc", type=str, default="") |
| 79 | + parser.add_argument("--debug", type=bool, default=False) |
| 80 | + args = parser.parse_args() |
| 81 | + |
| 82 | + graph = builder.compile() # langgraph 모델 load하여 사용하세요 |
| 83 | + |
| 84 | + get_eval_result( |
| 85 | + graph, |
| 86 | + name=args.name, |
| 87 | + version=args.version, |
| 88 | + desc=args.desc, |
| 89 | + input_dir=args.input_dir, |
| 90 | + output_dir=args.output_dir, |
| 91 | + debug=args.debug, |
| 92 | + ) |
0 commit comments