|
| 1 | +import unittest |
| 2 | +from typing import List |
| 3 | +from unittest.mock import MagicMock, mock_open, patch |
| 4 | + |
| 5 | +import torch |
| 6 | + |
| 7 | +from chebai.preprocessing.datasets.tox21 import Tox21MolNet |
| 8 | +from chebai.preprocessing.reader import ChemDataReader |
| 9 | +from tests.unit.mock_data.tox_mock_data import Tox21MolNetMockData |
| 10 | + |
| 11 | + |
| 12 | +class TestTox21MolNet(unittest.TestCase): |
| 13 | + @classmethod |
| 14 | + @patch("os.makedirs", return_value=None) |
| 15 | + def setUpClass(cls, mock_makedirs: MagicMock) -> None: |
| 16 | + """ |
| 17 | + Initialize a Tox21MolNet instance for testing. |
| 18 | +
|
| 19 | + Args: |
| 20 | + mock_makedirs (MagicMock): Mocked `os.makedirs` function. |
| 21 | + """ |
| 22 | + Tox21MolNet.READER = ChemDataReader |
| 23 | + cls.data_module = Tox21MolNet() |
| 24 | + |
| 25 | + @patch( |
| 26 | + "builtins.open", |
| 27 | + new_callable=mock_open, |
| 28 | + read_data=Tox21MolNetMockData.get_raw_data(), |
| 29 | + ) |
| 30 | + def test_load_data_from_file(self, mock_open_file: mock_open) -> None: |
| 31 | + """ |
| 32 | + Test the `_load_data_from_file` method for correct output. |
| 33 | +
|
| 34 | + Args: |
| 35 | + mock_open_file (mock_open): Mocked open function to simulate file reading. |
| 36 | + """ |
| 37 | + actual_data = self.data_module._load_data_from_file("fake/file/path.csv") |
| 38 | + |
| 39 | + first_instance = next(actual_data) |
| 40 | + |
| 41 | + # Check for required keys |
| 42 | + required_keys = ["features", "labels", "ident"] |
| 43 | + for key in required_keys: |
| 44 | + self.assertIn( |
| 45 | + key, first_instance, f"'{key}' key is missing in the output data." |
| 46 | + ) |
| 47 | + |
| 48 | + self.assertTrue( |
| 49 | + all(isinstance(feature, int) for feature in first_instance["features"]), |
| 50 | + "Not all elements in 'features' are integers.", |
| 51 | + ) |
| 52 | + |
| 53 | + # Check that 'features' can be converted to a tensor |
| 54 | + features = first_instance["features"] |
| 55 | + try: |
| 56 | + tensor_features = torch.tensor(features) |
| 57 | + self.assertTrue( |
| 58 | + tensor_features.ndim > 0, |
| 59 | + "'features' should be convertible to a non-empty tensor.", |
| 60 | + ) |
| 61 | + except Exception as e: |
| 62 | + self.fail(f"'features' cannot be converted to a tensor: {str(e)}") |
| 63 | + |
| 64 | + @patch( |
| 65 | + "builtins.open", |
| 66 | + new_callable=mock_open, |
| 67 | + read_data=Tox21MolNetMockData.get_raw_data(), |
| 68 | + ) |
| 69 | + @patch("torch.save") |
| 70 | + def test_setup_processed_simple_split( |
| 71 | + self, |
| 72 | + mock_torch_save: MagicMock, |
| 73 | + mock_open_file: mock_open, |
| 74 | + ) -> None: |
| 75 | + """ |
| 76 | + Test the `setup_processed` method for basic data splitting and saving. |
| 77 | +
|
| 78 | + Args: |
| 79 | + mock_torch_save (MagicMock): Mocked `torch.save` function to avoid actual file writes. |
| 80 | + mock_open_file (mock_open): Mocked `open` function to simulate file reading. |
| 81 | + """ |
| 82 | + self.data_module.setup_processed() |
| 83 | + |
| 84 | + # Verify if torch.save was called for each split (train, test, validation) |
| 85 | + self.assertEqual( |
| 86 | + mock_torch_save.call_count, 3, "Expected torch.save to be called 3 times." |
| 87 | + ) |
| 88 | + call_args_list = mock_torch_save.call_args_list |
| 89 | + self.assertIn("test", call_args_list[0][0][1], "Missing 'test' split.") |
| 90 | + self.assertIn("train", call_args_list[1][0][1], "Missing 'train' split.") |
| 91 | + self.assertIn( |
| 92 | + "validation", call_args_list[2][0][1], "Missing 'validation' split." |
| 93 | + ) |
| 94 | + |
| 95 | + # Check for non-overlap between train, test, and validation splits |
| 96 | + test_split: List[str] = [d["ident"] for d in call_args_list[0][0][0]] |
| 97 | + train_split: List[str] = [d["ident"] for d in call_args_list[1][0][0]] |
| 98 | + validation_split: List[str] = [d["ident"] for d in call_args_list[2][0][0]] |
| 99 | + |
| 100 | + self.assertTrue( |
| 101 | + set(train_split).isdisjoint(test_split), |
| 102 | + "Overlap detected between the train and test splits.", |
| 103 | + ) |
| 104 | + self.assertTrue( |
| 105 | + set(train_split).isdisjoint(validation_split), |
| 106 | + "Overlap detected between the train and validation splits.", |
| 107 | + ) |
| 108 | + self.assertTrue( |
| 109 | + set(test_split).isdisjoint(validation_split), |
| 110 | + "Overlap detected between the test and validation splits.", |
| 111 | + ) |
| 112 | + |
| 113 | + @patch.object( |
| 114 | + Tox21MolNet, |
| 115 | + "_load_data_from_file", |
| 116 | + return_value=Tox21MolNetMockData.get_processed_grouped_data(), |
| 117 | + ) |
| 118 | + @patch("torch.save") |
| 119 | + def test_setup_processed_with_group_split( |
| 120 | + self, mock_torch_save: MagicMock, mock_load_file: MagicMock |
| 121 | + ) -> None: |
| 122 | + """ |
| 123 | + Test the `setup_processed` method for group-based splitting and saving. |
| 124 | +
|
| 125 | + Args: |
| 126 | + mock_torch_save (MagicMock): Mocked `torch.save` function to avoid actual file writes. |
| 127 | + mock_load_file (MagicMock): Mocked `_load_data_from_file` to provide custom data. |
| 128 | + """ |
| 129 | + self.data_module.train_split = 0.5 |
| 130 | + self.data_module.setup_processed() |
| 131 | + |
| 132 | + # Verify if torch.save was called for each split |
| 133 | + self.assertEqual( |
| 134 | + mock_torch_save.call_count, 3, "Expected torch.save to be called 3 times." |
| 135 | + ) |
| 136 | + call_args_list = mock_torch_save.call_args_list |
| 137 | + self.assertIn("test", call_args_list[0][0][1], "Missing 'test' split.") |
| 138 | + self.assertIn("train", call_args_list[1][0][1], "Missing 'train' split.") |
| 139 | + self.assertIn( |
| 140 | + "validation", call_args_list[2][0][1], "Missing 'validation' split." |
| 141 | + ) |
| 142 | + |
| 143 | + # Check for non-overlap between train, test, and validation splits (based on 'ident') |
| 144 | + test_split: List[str] = [d["ident"] for d in call_args_list[0][0][0]] |
| 145 | + train_split: List[str] = [d["ident"] for d in call_args_list[1][0][0]] |
| 146 | + validation_split: List[str] = [d["ident"] for d in call_args_list[2][0][0]] |
| 147 | + |
| 148 | + self.assertTrue( |
| 149 | + set(train_split).isdisjoint(test_split), |
| 150 | + "Overlap detected between the train and test splits (based on 'ident').", |
| 151 | + ) |
| 152 | + self.assertTrue( |
| 153 | + set(train_split).isdisjoint(validation_split), |
| 154 | + "Overlap detected between the train and validation splits (based on 'ident').", |
| 155 | + ) |
| 156 | + self.assertTrue( |
| 157 | + set(test_split).isdisjoint(validation_split), |
| 158 | + "Overlap detected between the test and validation splits (based on 'ident').", |
| 159 | + ) |
| 160 | + |
| 161 | + # Check for non-overlap between train, test, and validation splits (based on 'group') |
| 162 | + test_split_grp: List[str] = [d["group"] for d in call_args_list[0][0][0]] |
| 163 | + train_split_grp: List[str] = [d["group"] for d in call_args_list[1][0][0]] |
| 164 | + validation_split_grp: List[str] = [d["group"] for d in call_args_list[2][0][0]] |
| 165 | + |
| 166 | + self.assertTrue( |
| 167 | + set(train_split_grp).isdisjoint(test_split_grp), |
| 168 | + "Overlap detected between the train and test splits (based on 'group').", |
| 169 | + ) |
| 170 | + self.assertTrue( |
| 171 | + set(train_split_grp).isdisjoint(validation_split_grp), |
| 172 | + "Overlap detected between the train and validation splits (based on 'group').", |
| 173 | + ) |
| 174 | + self.assertTrue( |
| 175 | + set(test_split_grp).isdisjoint(validation_split_grp), |
| 176 | + "Overlap detected between the test and validation splits (based on 'group').", |
| 177 | + ) |
| 178 | + |
| 179 | + |
| 180 | +if __name__ == "__main__": |
| 181 | + unittest.main() |
0 commit comments