|
| 1 | +# This file is for developers only |
| 2 | + |
| 3 | +__all__ = [] # Nothing should be imported from this file |
| 4 | + |
| 5 | + |
| 6 | +import random |
| 7 | + |
| 8 | +import numpy as np |
| 9 | +from torch.utils.data import DataLoader, Dataset |
| 10 | + |
| 11 | +from chebai.preprocessing.datasets import XYBaseDataModule |
| 12 | +from chebai.preprocessing.reader import ChemDataReader |
| 13 | + |
| 14 | + |
| 15 | +class _DummyDataModule(XYBaseDataModule): |
| 16 | + |
| 17 | + READER = ChemDataReader |
| 18 | + |
| 19 | + def __init__(self, num_of_labels: int, feature_vector_size: int, *args, **kwargs): |
| 20 | + super().__init__(*args, **kwargs) |
| 21 | + self._num_of_labels = num_of_labels |
| 22 | + self._feature_vector_size = feature_vector_size |
| 23 | + assert self._num_of_labels is not None |
| 24 | + assert self._feature_vector_size is not None |
| 25 | + |
| 26 | + def prepare_data(self): |
| 27 | + pass |
| 28 | + |
| 29 | + def setup(self, stage=None): |
| 30 | + pass |
| 31 | + |
| 32 | + @property |
| 33 | + def num_of_labels(self): |
| 34 | + return self._num_of_labels |
| 35 | + |
| 36 | + @property |
| 37 | + def feature_vector_size(self): |
| 38 | + return self._feature_vector_size |
| 39 | + |
| 40 | + def train_dataloader(self, *args, **kwargs) -> DataLoader: |
| 41 | + dataset = _DummyDataset(100, self.num_of_labels, self.feature_vector_size) |
| 42 | + return DataLoader( |
| 43 | + dataset, |
| 44 | + collate_fn=self.reader.collator, |
| 45 | + batch_size=self.batch_size, |
| 46 | + **kwargs, |
| 47 | + ) |
| 48 | + |
| 49 | + def test_dataloader(self, *args, **kwargs) -> DataLoader: |
| 50 | + dataset = _DummyDataset(20, self.num_of_labels, self.feature_vector_size) |
| 51 | + return DataLoader( |
| 52 | + dataset, |
| 53 | + collate_fn=self.reader.collator, |
| 54 | + batch_size=self.batch_size, |
| 55 | + **kwargs, |
| 56 | + ) |
| 57 | + |
| 58 | + def val_dataloader(self, *args, **kwargs) -> DataLoader: |
| 59 | + dataset = _DummyDataset(10, self.num_of_labels, self.feature_vector_size) |
| 60 | + return DataLoader( |
| 61 | + dataset, |
| 62 | + collate_fn=self.reader.collator, |
| 63 | + batch_size=self.batch_size, |
| 64 | + **kwargs, |
| 65 | + ) |
| 66 | + |
| 67 | + @property |
| 68 | + def _name(self) -> str: |
| 69 | + return "_DummyDataModule" |
| 70 | + |
| 71 | + |
| 72 | +class _DummyDataset(Dataset): |
| 73 | + def __init__(self, num_samples: int, num_labels: int, feature_vector_size: int): |
| 74 | + self.num_samples = num_samples |
| 75 | + self.num_labels = num_labels |
| 76 | + self.feature_vector_size = feature_vector_size |
| 77 | + |
| 78 | + def __len__(self): |
| 79 | + return self.num_samples |
| 80 | + |
| 81 | + def __getitem__(self, idx): |
| 82 | + return { |
| 83 | + "features": np.random.randint( |
| 84 | + 10, 100, size=self.feature_vector_size |
| 85 | + ), # Random feature vector |
| 86 | + "labels": np.random.choice( |
| 87 | + [False, True], size=self.num_labels |
| 88 | + ), # Random boolean labels |
| 89 | + "ident": random.randint(1, 40000), # Random identifier |
| 90 | + "group": None, # Default group value |
| 91 | + } |
| 92 | + |
| 93 | + |
| 94 | +if __name__ == "__main__": |
| 95 | + dataset = _DummyDataset(num_samples=100, num_labels=5, feature_vector_size=20) |
| 96 | + for i in range(10): |
| 97 | + print(dataset[i]) |
0 commit comments