|
| 1 | +import os |
1 | 2 | from pathlib import Path |
2 | 3 | from typing import List, Optional |
3 | 4 |
|
@@ -82,3 +83,91 @@ def explain_smiles(self, smiles): |
82 | 83 | ] + highlights |
83 | 84 |
|
84 | 85 | return {"highlights": highlights} |
| 86 | + |
| 87 | + def calculate_trust(self, c3p_classes_path, output_path="c3p_trust.json"): |
| 88 | + """Use reported confidence of C3P to calculate the trust. Use either the directly reported values or infer based on subclasses""" |
| 89 | + from c3p.classifier import PROGRAM_DIR |
| 90 | + |
| 91 | + program_dir = self.program_directory or PROGRAM_DIR |
| 92 | + confusion_matrix = dict() |
| 93 | + for f in os.listdir(program_dir): |
| 94 | + if f.startswith("__"): |
| 95 | + continue |
| 96 | + with open(os.path.join(program_dir, f), encoding="utf-8") as file: |
| 97 | + txt = file.read() |
| 98 | + |
| 99 | + if "__metadata__" in txt: |
| 100 | + txt = txt[txt.rindex("__metadata__") + 15 :] |
| 101 | + chebi_id = txt[ |
| 102 | + txt.index("id") |
| 103 | + + 12 : txt.index("id") |
| 104 | + + txt[txt.index("id") :].index(",") |
| 105 | + - 1 |
| 106 | + ] |
| 107 | + conf = [] |
| 108 | + if ( |
| 109 | + chebi_id == "" |
| 110 | + or chebi_id.startswith("R") |
| 111 | + or chebi_id.startswith("oxy") |
| 112 | + ): |
| 113 | + print(f, chebi_id) |
| 114 | + for name in [ |
| 115 | + "num_true_positives", |
| 116 | + "num_false_positives", |
| 117 | + "num_true_negatives", |
| 118 | + "num_false_negatives", |
| 119 | + ]: |
| 120 | + start_index = txt.index(name) + len(name) + 2 |
| 121 | + end_index = start_index + txt[start_index:].index(",") |
| 122 | + try: |
| 123 | + number = int(txt[start_index:end_index]) |
| 124 | + except ValueError: |
| 125 | + print( |
| 126 | + "Failed to read value near ", |
| 127 | + txt[start_index - 17 : end_index + 5], |
| 128 | + ) |
| 129 | + number = 0 |
| 130 | + conf.append(number) |
| 131 | + confusion_matrix[chebi_id] = { |
| 132 | + "TP": conf[0], |
| 133 | + "FP": conf[1], |
| 134 | + "TN": conf[2], |
| 135 | + "FN": conf[3], |
| 136 | + } |
| 137 | + else: |
| 138 | + print(f"Couldnt find metadata in {f}") |
| 139 | + |
| 140 | + # for classes where c3p doesn't have a number, take the sum of the subclasses |
| 141 | + new_confusion = dict() |
| 142 | + for cls in confusion_matrix: |
| 143 | + for parent in self.chebi_graph.predecessors(cls): |
| 144 | + if parent not in confusion_matrix: |
| 145 | + if parent not in new_confusion: |
| 146 | + new_confusion[parent] = {"TP": 0, "FP": 0, "TN": 0, "FN": 0} |
| 147 | + new_confusion[parent]["TP"] += confusion_matrix[cls]["TP"] |
| 148 | + new_confusion[parent]["FP"] += confusion_matrix[cls]["FP"] |
| 149 | + new_confusion[parent]["TN"] += confusion_matrix[cls]["TN"] |
| 150 | + new_confusion[parent]["FN"] += confusion_matrix[cls]["FN"] |
| 151 | + |
| 152 | + import json |
| 153 | + |
| 154 | + confusion_matrix = {**confusion_matrix, **new_confusion} |
| 155 | + print( |
| 156 | + f"After adding parent classes, confusion matrix contains {len(confusion_matrix)} classes ({len(new_confusion)} indirect)" |
| 157 | + ) |
| 158 | + json.dump(confusion_matrix, open(output_path, "w+")) |
| 159 | + |
| 160 | + |
| 161 | +if __name__ == "__main__": |
| 162 | + import os |
| 163 | + |
| 164 | + from chebifier.utils import load_chebi_graph |
| 165 | + |
| 166 | + chebi_graph = load_chebi_graph() |
| 167 | + predictor = C3PPredictor( |
| 168 | + "demo", |
| 169 | + program_directory=os.path.join("..", "c3p", "c3p", "programs"), |
| 170 | + chebi_graph=chebi_graph, |
| 171 | + ) |
| 172 | + print(predictor.predict_smiles_list(["CO", "CO"])) |
| 173 | + # predictor.calculate_trust(os.path.join("..", "ensemble-eval", "ensemble_eval_model_preds", "c3p_classes.txt"), "c3p_trust_new.json") |
0 commit comments