-
Notifications
You must be signed in to change notification settings - Fork 1
Open
Description
Hi,
Thank you for your nice paper and released code!
I am recently looking at how DSMI and DSE would work in some simple datasets. But I found DSMI(A;A) is not close to DSE(A). Is this expected?
BR,
import numpy as np
from dsmi import diffusion_spectral_mutual_information
from dse import diffusion_spectral_entropy
for n_samples in [100, 500, 1000, 2000]:
embedding_vectors = np.random.uniform(0, 1, (n_samples, 10))
DSMI, _ = diffusion_spectral_mutual_information(
embedding_vectors=embedding_vectors,
reference_vectors=embedding_vectors)
DSE = diffusion_spectral_entropy(embedding_vectors=embedding_vectors)
print(f'num of samples = {n_samples}, DSMI[embedding, embedding] = {DSMI}, DSE[embedding] = {DSE}' )
Then I got
num of samples = 100, DSMI[embedding, embedding] = 0.02843197210459075, DSE[embedding] = 0.0908556597236652
num of samples = 500, DSMI[embedding, embedding] = 0.019353783018266492, DSE[embedding] = 0.09478050957948245
num of samples = 1000, DSMI[embedding, embedding] = 0.019112679773918215, DSE[embedding] = 0.0969059254282217
num of samples = 2000, DSMI[embedding, embedding] = 0.015199623500426241, DSE[embedding] = 0.09653039901116785
Metadata
Metadata
Assignees
Labels
No labels