Skip to content

Commit eeffbc5

Browse files
authored
Update README.md
1 parent 4d02349 commit eeffbc5

File tree

1 file changed

+2
-2
lines changed

1 file changed

+2
-2
lines changed

scikit-learn/README.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -7,10 +7,10 @@ The folders included demo programs for leverage scikit-learn library to solve ta
77
|Algorithm|Description|Link|
88
|------|------|--------|
99
|Linear regression|Linear regression is a linear modeling to describe the relation between a scalar dependent variable y and one or more independent variables, X.|[Source Code](https://github.com/Cheng-Lin-Li/MachineLearning/blob/master/scikit-learn/LinearRegression/sklearn-LinearRegression.py)|
10-
|Logistic regression|Aka logit regression. It is different to regression analysis. A linear probability classifier model to categorize random variable Y being 0 or 1 by given experiment data. Assumes each of categorize are independent and irrelevant alternatives. The model p(y=1\|x, b, w) = sigmoid(g(x)) where g(x)=b+wTx. The sigmoid function = 1/1+e^(-a) where a = g(x).|[Source Code](https://github.com/Cheng-Lin-Li/MachineLearning/blob/master/scikit-learn/LogisticRegression/logistic_regression.py)|
10+
|Logistic regression|logit regression. It is different to regression analysis. A linear probability classifier model to categorize random variable Y being 0 or 1 by given experiment data. Assumes each of categorize are independent and irrelevant alternatives. The model p(y=1\|x, b, w) = sigmoid(g(x)) where g(x)=b+wTx. The sigmoid function = 1/1+e^(-a) where a = g(x).|[Source Code](https://github.com/Cheng-Lin-Li/MachineLearning/blob/master/scikit-learn/LogisticRegression/logistic_regression.py)|
1111
|Gaussian Mixture Models (GMMs)|GMMs are among the most statistically mature methods for data clustering (and density estimation). It assumes each component generates data from a Gaussian distribution.|[Source Code](https://github.com/Cheng-Lin-Li/MachineLearning/blob/master/scikit-learn/KMean_GMM/k-means_EM-GMM.py)|
1212
|K-Means|One of most famous and easy to understand clustering algorithm|[Source Code](https://github.com/Cheng-Lin-Li/MachineLearning/blob/master/scikit-learn/KMean_GMM/k-means_EM-GMM.py)|
13-
|PLA| Aka Perceptron Learning Algorithm. A solver for binary classification task. |[Source Code](https://github.com/Cheng-Lin-Li/MachineLearning/blob/master/scikit-learn/PLA/sklearn-Perceptron.py)|
13+
|PLA|Perceptron Learning Algorithm. A solver for binary classification task. |[Source Code](https://github.com/Cheng-Lin-Li/MachineLearning/blob/master/scikit-learn/PLA/sklearn-Perceptron.py)|
1414

1515

1616

0 commit comments

Comments
 (0)