-
Notifications
You must be signed in to change notification settings - Fork 30
Description
I'm trying to evaluate the performance of the code for segmentation of my 2D CT images. However, there is problem for loading deconv_length from keras.utils.conv_utils or even tensorflow.keras.utils. I googled the problem and replaced the "deconv_length" by "deconv_output_length". Again, an error occurs for the following line:
deconv_cap_1_1 = DeconvCapsuleLayer(kernel_size=4, num_capsule=8, num_atoms=32, upsamp_type='deconv', scaling=2, routings=3, padding='same', name='deconv_cap_1_1')(conv_cap_4_1)
Exception has occurred: AssertionError
Exception encountered when calling layer "deconv_cap_1_1" (type DeconvCapsuleLayer).
in user code:
File "d:\My_Codes\New_Cheng\segcapsnet\capsule_layers.py", line 250, in call *
out_height = deconv_output_length(self.input_height, self.scaling, self.kernel_size, self.padding)
File "C:\Users\ASUS\anaconda3\lib\site-packages\keras\utils\conv_utils.py", line 177, in deconv_output_length **
assert padding in {'same', 'valid', 'full'}
AssertionError:
Call arguments received:
• input_tensor=tf.Tensor(shape=(None, 64, 64, 8, 32), dtype=float32)
• training=None
File "C:\Users\ASUS\AppData\Local\Temp_autograph_generated_filekx3mg4bh.py", line 63, in tf__call
ag_.if_stmt(ag__.ld(self).upsamp_type == 'resize', if_body_1, else_body_1, get_state_1, set_state_1, ('outputs',), 1)
File "C:\Users\ASUS\AppData\Local\Temp_autograph_generated_filekx3mg4bh.py", line 55, in else_body_1
ag_.if_stmt(ag__.ld(self).upsamp_type == 'subpix', if_body, else_body, get_state, set_state, ('outputs',), 1)
File "C:\Users\ASUS\AppData\Local\Temp_autograph_generated_filekx3mg4bh.py", line 45, in else_body
out_height = ag_.converted_call(ag__.ld(deconv_output_length), (ag__.ld(self).input_height, ag__.ld(self).scaling, ag__.ld(self).kernel_size, ag__.ld(self).padding), None, fscope)
During handling of the above exception, another exception occurred:
During handling of the above exception, another exception occurred:
File "D:\My_Codes\New_Cheng\segcapsnet\capsnet.py", line 53, in CapsNetR3
deconv_cap_1_1 = DeconvCapsuleLayer(kernel_size=4, num_capsule=8, num_atoms=32, upsamp_type='deconv',
File "D:\My_Codes\New_Cheng\utils\model_helper.py", line 29, in create_model
model_list = CapsNetR3(input_shape, args.num_class, enable_decoder)
File "D:\My_Codes\New_Cheng\main.py", line 98, in main
model_list = create_model(args=args, input_shape=net_input_shape, enable_decoder=True)
File "D:\My_Codes\New_Cheng\main.py", line 284, in
main(arguments)