|
1 | | -using SciMLOperators, Random, SparseArrays, Test |
| 1 | +using SciMLOperators, Random, SparseArrays, Test, LinearAlgebra |
2 | 2 | using SciMLOperators: IdentityOperator, |
3 | 3 | NullOperator, |
4 | 4 | ScaledOperator, |
5 | | - AddedOperator |
| 5 | + AddedOperator, |
| 6 | + ComposedOperator, |
| 7 | + cache_operator |
6 | 8 |
|
7 | 9 | function apply_op!(H, w, v, u, p, t) |
8 | 10 | H(w, v, u, p, t) |
@@ -64,4 +66,105 @@ test_apply_noalloc(H, w, v, u, p, t) = @test (@allocations apply_op!(H, w, v, u, |
64 | 66 | test_apply_noalloc(H_sparse, w, v, u, p, t) |
65 | 67 | test_apply_noalloc(H_dense, w, v, u, p, t) |
66 | 68 | end |
| 69 | + |
| 70 | + # Test ComposedOperator allocations (PR #316) |
| 71 | + # Before the fix, tuple splatting caused many allocations. |
| 72 | + # After the fix, we should have minimal allocations (Julia 1.11 has 1, earlier versions have 0). |
| 73 | + @testset "ComposedOperator minimal allocations" begin |
| 74 | + N = 100 |
| 75 | + |
| 76 | + # Create operators for composition |
| 77 | + A1 = MatrixOperator(rand(N, N)) |
| 78 | + A2 = MatrixOperator(rand(N, N)) |
| 79 | + A3 = MatrixOperator(rand(N, N)) |
| 80 | + |
| 81 | + # Create ComposedOperator |
| 82 | + L = A1 * A2 * A3 |
| 83 | + |
| 84 | + # Set up cache |
| 85 | + v = rand(N) |
| 86 | + w = similar(v) |
| 87 | + L = cache_operator(L, v) |
| 88 | + |
| 89 | + u = rand(N) |
| 90 | + p = nothing |
| 91 | + t = 0.0 |
| 92 | + |
| 93 | + # Warm up |
| 94 | + mul!(w, L, v) |
| 95 | + L(w, v, u, p, t) |
| 96 | + |
| 97 | + # Test mul! - should have minimal allocations |
| 98 | + # Julia 1.11 has a known minor allocation issue (1 allocation) |
| 99 | + # Earlier versions should have 0 allocations |
| 100 | + allocs_mul = @allocations mul!(w, L, v) |
| 101 | + @test allocs_mul <= 1 |
| 102 | + |
| 103 | + # Test operator call - should have minimal allocations |
| 104 | + allocs_call = @allocations L(w, v, u, p, t) |
| 105 | + @test allocs_call <= 1 |
| 106 | + |
| 107 | + # Test with matrices |
| 108 | + K = 5 |
| 109 | + V = rand(N, K) |
| 110 | + W = similar(V) |
| 111 | + L_mat = cache_operator(A1 * A2 * A3, V) |
| 112 | + |
| 113 | + # Warm up |
| 114 | + mul!(W, L_mat, V) |
| 115 | + L_mat(W, V, u, p, t) |
| 116 | + |
| 117 | + # Test with matrices - should have minimal allocations |
| 118 | + allocs_mul_mat = @allocations mul!(W, L_mat, V) |
| 119 | + @test allocs_mul_mat <= 1 |
| 120 | + |
| 121 | + allocs_call_mat = @allocations L_mat(W, V, u, p, t) |
| 122 | + @test allocs_call_mat <= 1 |
| 123 | + end |
| 124 | + |
| 125 | + # Test accepted_kwargs allocations (PR #313) |
| 126 | + # With Val(tuple), kwarg filtering should be compile-time with minimal allocations |
| 127 | + @testset "accepted_kwargs with Val" begin |
| 128 | + N = 50 |
| 129 | + |
| 130 | + # Create a MatrixOperator with accepted_kwargs using Val for compile-time filtering |
| 131 | + J = rand(N, N) |
| 132 | + |
| 133 | + update_func! = (M, u, p, t; dtgamma = 1.0) -> begin |
| 134 | + M .= dtgamma .* J |
| 135 | + nothing |
| 136 | + end |
| 137 | + |
| 138 | + op = MatrixOperator( |
| 139 | + copy(J); |
| 140 | + update_func! = update_func!, |
| 141 | + accepted_kwargs = Val((:dtgamma,)) # Use Val for compile-time filtering |
| 142 | + ) |
| 143 | + |
| 144 | + u = rand(N) |
| 145 | + p = nothing |
| 146 | + t = 0.0 |
| 147 | + |
| 148 | + # Warm up |
| 149 | + update_coefficients!(op, u, p, t; dtgamma = 0.5) |
| 150 | + |
| 151 | + # Test that update_coefficients! with accepted_kwargs has minimal allocations |
| 152 | + # The Val approach significantly reduces allocations compared to plain tuples |
| 153 | + allocs_update = @allocations update_coefficients!(op, u, p, t; dtgamma = 0.5) |
| 154 | + @test allocs_update <= 6 # Some allocations may occur due to Julia version/kwarg handling |
| 155 | + |
| 156 | + # Test with different dtgamma values - should have similar behavior |
| 157 | + allocs_update2 = @allocations update_coefficients!(op, u, p, t; dtgamma = 1.0) |
| 158 | + @test allocs_update2 <= 6 |
| 159 | + |
| 160 | + allocs_update3 = @allocations update_coefficients!(op, u, p, t; dtgamma = 2.0) |
| 161 | + @test allocs_update3 <= 6 |
| 162 | + |
| 163 | + # Test operator application after update |
| 164 | + v = rand(N) |
| 165 | + w = similar(v) |
| 166 | + op(w, v, u, p, t; dtgamma = 0.5) # Warm up |
| 167 | + allocs_call = @allocations op(w, v, u, p, t; dtgamma = 0.5) |
| 168 | + @test allocs_call <= 6 |
| 169 | + end |
67 | 170 | end |
0 commit comments