@@ -193,11 +193,11 @@ Returns:
193
193
- w1_uv: number; the Wasserstein-1 distance
194
194
"""
195
195
function W1 (u_samples:: AbstractVector , v_samples:: AbstractVector ;
196
- normalize = true )
197
- L = maximum ([u_samples; v_samples]) - minimum ([u_samples; v_samples])
196
+ normalize = false )
198
197
return if ! normalize
199
198
scsta. wasserstein_distance (u_samples, v_samples)
200
199
else
200
+ L = maximum ( (u_samples; v_samples) ) - minimum ( (u_samples; v_samples) )
201
201
scsta. wasserstein_distance (u_samples, v_samples) / L
202
202
end
203
203
end
@@ -226,7 +226,7 @@ of the two (minimum number of rows) will be taken.
226
226
computed for each pair (u_j, v_j) individually.
227
227
"""
228
228
function W1 (U_samples:: AbstractMatrix , V_samples:: AbstractMatrix ;
229
- normalize = true )
229
+ normalize = false )
230
230
if size (U_samples, 1 ) != size (V_samples, 1 )
231
231
println (warn (" W1" ), " sizes of U_samples & V_samples don't match; " ,
232
232
" will use the minimum of the two" )
@@ -241,10 +241,10 @@ function W1(U_samples::AbstractMatrix, V_samples::AbstractMatrix;
241
241
return w1_UV
242
242
end
243
243
244
- W1 (U_samples:: AbstractMatrix , v_samples:: AbstractVector ; normalize = true ) =
244
+ W1 (U_samples:: AbstractMatrix , v_samples:: AbstractVector ; normalize = false ) =
245
245
W1 (vec (U_samples), v_samples; normalize = normalize)
246
246
247
- W1 (u_samples:: AbstractVector , V_samples:: AbstractMatrix ; normalize = true ) =
247
+ W1 (u_samples:: AbstractVector , V_samples:: AbstractMatrix ; normalize = false ) =
248
248
W1 (u_samples, vec (V_samples); normalize = normalize)
249
249
250
250
"""
0 commit comments