|
| 1 | +module EKI |
| 2 | + |
| 3 | +""" |
| 4 | +Module: EKI |
| 5 | +------------------------------------- |
| 6 | +Packages required: LinearAlgebra, |
| 7 | + Statistics, |
| 8 | + Distributions |
| 9 | + LinearAlgebra |
| 10 | + DifferentialeEquations |
| 11 | + Random |
| 12 | + Sundials |
| 13 | +------------------------------------- |
| 14 | +Idea: To construct an object to perform Ensemble Kalman updates |
| 15 | + It also measures errors to the truth to assess convergence |
| 16 | +------------------------------------- |
| 17 | +Exports: EKIObject |
| 18 | + update_ensemble! |
| 19 | + compute_error |
| 20 | + construct_initial_ensemble |
| 21 | + run_cloudy |
| 22 | + run_cloudy_ensemble |
| 23 | +------------------------------------- |
| 24 | +""" |
| 25 | + |
| 26 | +# Import Cloudy modules |
| 27 | +using Cloudy.PDistributions |
| 28 | +using Cloudy.Sources |
| 29 | +using Cloudy.KernelTensors |
| 30 | + |
| 31 | +# packages |
| 32 | +using Random |
| 33 | +using Statistics |
| 34 | +using Sundials # CVODE_BDF() solver for ODE |
| 35 | +using Distributions |
| 36 | +using LinearAlgebra |
| 37 | +using DifferentialEquations |
| 38 | + |
| 39 | +# exports |
| 40 | +export EKIObj |
| 41 | +export construct_initial_ensemble |
| 42 | +export compute_error |
| 43 | +export run_cloudy |
| 44 | +export run_cloudy_ensemble |
| 45 | +export update_ensemble! |
| 46 | + |
| 47 | + |
| 48 | +##### |
| 49 | +##### Structure definitions |
| 50 | +##### |
| 51 | + |
| 52 | +# structure to organize data |
| 53 | +struct EKIObj |
| 54 | + u::Vector{Array{Float64, 2}} |
| 55 | + unames::Vector{String} |
| 56 | + g_t::Vector{Float64} |
| 57 | + cov::Array{Float64, 2} |
| 58 | + N_ens::Int64 |
| 59 | + g::Vector{Array{Float64, 2}} |
| 60 | + error::Vector{Float64} |
| 61 | +end |
| 62 | + |
| 63 | + |
| 64 | +##### |
| 65 | +##### Function definitions |
| 66 | +##### |
| 67 | + |
| 68 | +# outer constructors |
| 69 | +function EKIObj(parameters::Array{Float64, 2}, parameter_names::Vector{String}, |
| 70 | + t_mean, t_cov::Array{Float64, 2}) |
| 71 | + |
| 72 | + # ensemble size |
| 73 | + N_ens = size(parameters)[1] |
| 74 | + # parameters |
| 75 | + u = Array{Float64, 2}[] # array of Matrix{Float64}'s |
| 76 | + push!(u, parameters) # insert parameters at end of array (in this case just 1st entry) |
| 77 | + # observations |
| 78 | + g = Vector{Float64}[] |
| 79 | + # error store |
| 80 | + error = [] |
| 81 | + |
| 82 | + EKIObj(u, parameter_names, t_mean, t_cov, N_ens, g, error) |
| 83 | +end |
| 84 | + |
| 85 | + |
| 86 | +""" |
| 87 | + construct_initial_ensemble(priors, N_ens) |
| 88 | + |
| 89 | +Constructs the initial parameters, by sampling N_ens samples from specified |
| 90 | +prior distributions. |
| 91 | +""" |
| 92 | +function construct_initial_ensemble(N_ens::Int64, priors; rng_seed=42) |
| 93 | + N_params = length(priors) |
| 94 | + params = zeros(N_ens, N_params) |
| 95 | + # Ensuring reproducibility of the sampled parameter values |
| 96 | + Random.seed!(rng_seed) |
| 97 | + for i in 1:N_params |
| 98 | + prior_i = priors[i] |
| 99 | + params[:, i] = rand(prior_i, N_ens) |
| 100 | + end |
| 101 | + |
| 102 | + return params |
| 103 | +end # function construct_initial ensemble |
| 104 | + |
| 105 | +function compute_error(eki) |
| 106 | + meang = dropdims(mean(eki.g[end], dims=1), dims=1) |
| 107 | + diff = eki.g_t - meang |
| 108 | + X = eki.cov \ diff # diff: column vector |
| 109 | + newerr = dot(diff, X) |
| 110 | + push!(eki.error, newerr) |
| 111 | +end # function compute_error |
| 112 | + |
| 113 | + |
| 114 | +function run_cloudy_ensemble(kernel::KernelTensor{Float64}, |
| 115 | + dist::PDistribution{Float64}, |
| 116 | + params::Array{Float64, 2}, |
| 117 | + moments::Array{Float64, 1}, |
| 118 | + tspan::Tuple{Float64, Float64}; rng_seed=42) |
| 119 | + |
| 120 | + N_ens = size(params, 1) # params is N_ens x N_params |
| 121 | + n_moments = length(moments) |
| 122 | + g_ens = zeros(N_ens, n_moments) |
| 123 | + |
| 124 | + Random.seed!(rng_seed) |
| 125 | + for i in 1:N_ens |
| 126 | + # run cloudy with the current parameters, i.e., map θ to G(θ) |
| 127 | + g_ens[i, :] = run_cloudy(params[i, :], kernel, dist, moments, tspan) |
| 128 | + end |
| 129 | + return g_ens |
| 130 | +end # function run_cloudy_ensemble |
| 131 | + |
| 132 | + |
| 133 | +""" |
| 134 | +run_cloudy(kernel, dist, moments, tspan) |
| 135 | +
|
| 136 | +- `kernel` - is the collision-coalescence kernel that determines the evolution |
| 137 | + of the droplet size distribution |
| 138 | +- `dist` - is a mass distribution function |
| 139 | +- `moments` - is an array defining the moments of dist Cloudy will compute |
| 140 | + over time (e.g, [0.0, 1.0, 2.0]) |
| 141 | +- `tspan` - is a tuple definint the time interval over which cloudy is run |
| 142 | +""" |
| 143 | +function run_cloudy(params::Array{Float64, 1}, kernel::KernelTensor{Float64}, |
| 144 | + dist::PDistributions.PDistribution{Float64}, |
| 145 | + moments::Array{Float64, 1}, |
| 146 | + tspan=Tuple{Float64, Float64}) |
| 147 | + |
| 148 | + # generate the initial distribution |
| 149 | + dist = PDistributions.update_params(dist, params) |
| 150 | + |
| 151 | + # Numerical parameters |
| 152 | + tol = 1e-7 |
| 153 | + |
| 154 | + # Make sure moments are up to date. mom0 is the initial condition for the |
| 155 | + # ODE problem |
| 156 | + moments_init = fill(NaN, length(moments)) |
| 157 | + for (i, mom) in enumerate(moments) |
| 158 | + moments_init[i] = PDistributions.moment(dist, convert(Float64, mom)) |
| 159 | + end |
| 160 | + |
| 161 | + # Set up ODE problem: dM/dt = f(M,p,t) |
| 162 | + rhs(M, p, t) = get_src_coalescence(M, dist, kernel) |
| 163 | + prob = ODEProblem(rhs, moments_init, tspan) |
| 164 | + # Solve the ODE |
| 165 | + sol = solve(prob, CVODE_BDF(), alg_hints=[:stiff], reltol=tol, abstol=tol) |
| 166 | + # Return moments at last time step |
| 167 | + moments_final = vcat(sol.u'...)[end, :] |
| 168 | + time = tspan[2] |
| 169 | + |
| 170 | + return moments_final |
| 171 | +end # function run_cloudy |
| 172 | + |
| 173 | + |
| 174 | +function update_ensemble!(eki, g) |
| 175 | + # u: N_ens x N_params |
| 176 | + u = eki.u[end] |
| 177 | + |
| 178 | + u_bar = fill(0.0, size(u)[2]) |
| 179 | + # g: N_ens x N_data |
| 180 | + g_bar = fill(0.0, size(g)[2]) |
| 181 | + |
| 182 | + cov_ug = fill(0.0, size(u)[2], size(g)[2]) |
| 183 | + cov_gg = fill(0.0, size(g)[2], size(g)[2]) |
| 184 | + |
| 185 | + # update means/covs with new param/observation pairs u, g |
| 186 | + for j = 1:eki.N_ens |
| 187 | + |
| 188 | + u_ens = u[j, :] |
| 189 | + g_ens = g[j, :] |
| 190 | + |
| 191 | + # add to mean |
| 192 | + u_bar += u_ens |
| 193 | + g_bar += g_ens |
| 194 | + |
| 195 | + #add to cov |
| 196 | + cov_ug += u_ens * g_ens' # cov_ug is N_params x N_data |
| 197 | + cov_gg += g_ens * g_ens' |
| 198 | + end |
| 199 | + |
| 200 | + u_bar = u_bar / eki.N_ens |
| 201 | + g_bar = g_bar / eki.N_ens |
| 202 | + cov_ug = cov_ug / eki.N_ens - u_bar * g_bar' |
| 203 | + cov_gg = cov_gg / eki.N_ens - g_bar * g_bar' |
| 204 | + |
| 205 | + # update the parameters (with additive noise too) |
| 206 | + noise = rand(MvNormal(zeros(size(g)[2]), eki.cov), eki.N_ens) # N_data * N_ens |
| 207 | + y = (eki.g_t .+ noise)' # add g_t (N_data) to each column of noise (N_data x N_ens), then transp. into N_ens x N_data |
| 208 | + tmp = (cov_gg + eki.cov) \ (y - g)' # N_data x N_data \ [N_ens x N_data - N_ens x N_data]' --> tmp is N_data x N_ens |
| 209 | + u += (cov_ug * tmp)' # N_ens x N_params |
| 210 | + |
| 211 | + # store new parameters (and observations) |
| 212 | + push!(eki.u, u) # N_ens x N_params |
| 213 | + push!(eki.g, g) # N_ens x N_data |
| 214 | + |
| 215 | + compute_error(eki) |
| 216 | + |
| 217 | +end # function update_ensemble! |
| 218 | + |
| 219 | +end # module EKI |
0 commit comments