|
| 1 | +module Histograms |
| 2 | +""" |
| 3 | +This module is mostly a convenient wrapper of Python functions (numpy, scipy). |
| 4 | +
|
| 5 | +Functions in this module: |
| 6 | + - wasserstein (2 methods) |
| 7 | +
|
| 8 | +""" |
| 9 | + |
| 10 | +import PyCall |
| 11 | +scsta = PyCall.pyimport("scipy.stats") |
| 12 | + |
| 13 | +################################################################################ |
| 14 | +# distance functions ########################################################### |
| 15 | +################################################################################ |
| 16 | +""" |
| 17 | +Compute the Wasserstein-1 distance between two distributions from their samples |
| 18 | +
|
| 19 | +Parameters: |
| 20 | + - u_samples: array-like; samples from the 1st distribution |
| 21 | + - v_samples: array-like; samples from the 2nd distribution |
| 22 | + - normalize: boolean; whether to normalize the distance by 1/(max-min) |
| 23 | +
|
| 24 | +Returns: |
| 25 | + - w1: number; the Wasserstein-1 distance |
| 26 | +""" |
| 27 | +function wasserstein(u_samples::AbstractVector, v_samples::AbstractVector; |
| 28 | + normalize = true) |
| 29 | + L = maximum([u_samples; v_samples]) - minimum([u_samples; v_samples]) |
| 30 | + return if !normalize |
| 31 | + scsta.wasserstein_distance(u_samples, v_samples) |
| 32 | + else |
| 33 | + scsta.wasserstein_distance(u_samples, v_samples) / L |
| 34 | + end |
| 35 | +end |
| 36 | + |
| 37 | +""" |
| 38 | +Compute the pairwise Wasserstein-1 distances between two sets of distributions |
| 39 | +from their samples |
| 40 | +
|
| 41 | +Parameters: |
| 42 | + - U_samples: matrix-like; samples from distributions (u1, u2, ...) |
| 43 | + - V_samples: matrix-like; samples from distributions (v1, v2, ...) |
| 44 | + - normalize: boolean; whether to normalize the distances by 1/(max-min) |
| 45 | +
|
| 46 | +`U_samples` and `V_samples` should have samples in the 2nd dimension (along |
| 47 | +rows) and have the same 1st dimension (same number of rows). If not, the minimum |
| 48 | +of the two (minimum number of rows) will be taken. |
| 49 | +
|
| 50 | +`normalize` induces *pairwise* normalization, i.e. it max's and min's are |
| 51 | +computed for each pair (u_j, v_j) individually. |
| 52 | +
|
| 53 | +Returns: |
| 54 | + - w1: array-like; the pairwise Wasserstein-1 distances: |
| 55 | + w1(u1, v1) |
| 56 | + w1(u2, v2) |
| 57 | + ... |
| 58 | + w1(u_K, v_K) |
| 59 | +""" |
| 60 | +function wasserstein(U_samples::AbstractMatrix, V_samples::AbstractMatrix; |
| 61 | + normalize = true) |
| 62 | + if size(U_samples, 1) != size(V_samples, 1) |
| 63 | + println(warn("wasserstein"), "sizes of U_samples & V_samples don't match; ", |
| 64 | + "will use the minimum of the two") |
| 65 | + end |
| 66 | + K = min(size(U_samples, 1), size(V_samples, 1)) |
| 67 | + w1 = zeros(K) |
| 68 | + U_sorted = sort(U_samples[1:K, 1:end], dims = 2) |
| 69 | + V_sorted = sort(V_samples[1:K, 1:end], dims = 2) |
| 70 | + for k in 1:K |
| 71 | + w1[k] = wasserstein(U_sorted[k, 1:end], V_sorted[k, 1:end]; |
| 72 | + normalize = normalize) |
| 73 | + end |
| 74 | + return w1 |
| 75 | +end |
| 76 | + |
| 77 | +end # module |
| 78 | + |
| 79 | + |
0 commit comments