You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
| spark.clickhouse.ignoreUnsupportedTransform | false | ClickHouse supports using complex expressions as sharding keys or partition values, e.g. `cityHash64(col_1, col_2)`, and those can not be supported by Spark now. If `true`, ignore the unsupported expressions, otherwise fail fast w/ an exception. Note, when `spark.clickhouse.write.distributed.convertLocal` is enabled, ignore unsupported sharding keys may corrupt the data. | 0.4.0 |
501
+
| spark.clickhouse.ignoreUnsupportedTransform | false | ClickHouse supports using complex expressions as sharding keys or partition values, e.g. `cityHash64(col_1, col_2)`, which are currently not supported by Spark. If `true`, ignore the unsupported expressions, otherwise fail fast w/ an exception. Note, when `spark.clickhouse.write.distributed.convertLocal` is enabled, ignore unsupported sharding keys may corrupt the data.| 0.4.0 |
502
502
| spark.clickhouse.read.compression.codec | lz4 | The codec used to decompress data for reading. Supported codecs: none, lz4. | 0.5.0 |
503
503
| spark.clickhouse.read.distributed.convertLocal | true | When reading Distributed table, read local table instead of itself. If `true`, ignore `spark.clickhouse.read.distributed.useClusterNodes`. | 0.1.0 |
504
504
| spark.clickhouse.read.fixedStringAs | binary | Read ClickHouse FixedString type as the specified Spark data type. Supported types: binary, string | 0.8.0 |
505
505
| spark.clickhouse.read.format | json | Serialize format for reading. Supported formats: json, binary | 0.6.0 |
| spark.clickhouse.read.splitByPartitionId | true | If `true`, construct input partition filter by virtual column `_partition_id`, instead of partition value. There are known bugs to assemble SQL predication by partition value. This feature requires ClickHouse Server v21.6+| 0.4.0 |
507
+
| spark.clickhouse.read.splitByPartitionId | true | If `true`, construct input partition filter by virtual column `_partition_id`, instead of partition value. There are known issues with assembling SQL predicates by partition value. This feature requires ClickHouse Server v21.6+ | 0.4.0 |
508
508
| spark.clickhouse.useNullableQuerySchema | false | If `true`, mark all the fields of the query schema as nullable when executing `CREATE/REPLACE TABLE ... AS SELECT ...` on creating the table. Note, this configuration requires SPARK-43390(available in Spark 3.5), w/o this patch, it always acts as `true`. | 0.8.0 |
509
509
| spark.clickhouse.write.batchSize | 10000 | The number of records per batch on writing to ClickHouse. | 0.1.0 |
510
510
| spark.clickhouse.write.compression.codec | lz4 | The codec used to compress data for writing. Supported codecs: none, lz4. | 0.3.0 |
@@ -520,7 +520,6 @@ The following are the adjustable configurations available in the connector:
520
520
| spark.clickhouse.write.retryInterval | 10s | The interval in seconds between write retry. | 0.1.0 |
521
521
| spark.clickhouse.write.retryableErrorCodes | 241 | The retryable error codes returned by ClickHouse server when write failing. | 0.1.0 |
522
522
523
-
524
523
## Supported Data Types {#supported-data-types}
525
524
526
525
This section outlines the mapping of data types between Spark and ClickHouse. The tables below provide quick references
0 commit comments