@@ -115,58 +115,11 @@ def run_ssps(
115115 f"{ save_path } /{ menu_option } _{ discount_type } _eta{ menu_item .eta } _rho{ menu_item .rho } _global_consumption.nc4"
116116 )
117117
118- if marginal_damages :
119- md = (
120- menu_item .global_consumption_no_pulse
121- - menu_item .global_consumption_pulse
122- ) * menu_item .climate .conversion
123- md = md .rename ("marginal_damages" ).to_dataset ()
124- for var in md .variables :
125- md [var ].encoding .clear ()
126- md .chunk (
127- {
128- "discount_type" : 1 ,
129- "weitzman_parameter" : 1 ,
130- "ssp" : 1 ,
131- "model" : 1 ,
132- "gas" : 1 ,
133- "year" : 10 ,
134- }
135- ).to_zarr (
136- f"{ save_path } /{ menu_option } _{ discount_type } _eta{ menu_item .eta } _rho{ menu_item .rho } _uncollapsed_marginal_damages.zarr" ,
137- consolidated = True ,
138- mode = "w" ,
139- )
140-
141- if factors :
142-
143- # holding population constant
144- # from 2100 to 2300 with 2099 values
145- pop = menu_item .collapsed_pop .sum ("region" )
146- pop = pop .reindex (
147- year = range (pop .year .min ().values , menu_item .ext_end_year + 1 ),
148- method = "ffill" ,
149- )
118+ if marginal_damages == True :
119+ md = menu_item .uncollapsed_marginal_damages
150120
151- df = menu_item .calculate_discount_factors (
152- menu_item .global_consumption_no_pulse / pop
153- ).to_dataset (name = "discount_factor" )
154- for var in df .variables :
155- df [var ].encoding .clear ()
156- df .chunk (
157- {
158- "discount_type" : 1 ,
159- "weitzman_parameter" : 1 ,
160- "ssp" : 1 ,
161- "model" : 1 ,
162- # "gas":1,
163- "year" : 10 ,
164- }
165- ).to_zarr (
166- f"{ save_path } /{ menu_option } _{ discount_type } _eta{ menu_item .eta } _rho{ menu_item .rho } _uncollapsed_discount_factors.zarr" ,
167- consolidated = True ,
168- mode = "w" ,
169- )
121+ if factors == True :
122+ df = menu_item .uncollapsed_discount_factors
170123
171124
172125def run_rff (
@@ -235,55 +188,8 @@ def run_rff(
235188 f"{ save_path } /{ menu_option } _{ discount_type } _eta{ menu_item .eta } _rho{ menu_item .rho } _global_consumption.nc4"
236189 )
237190
238- if marginal_damages :
239- md = (
240- (
241- (
242- menu_item .global_consumption_no_pulse
243- - menu_item .global_consumption_pulse
244- )
245- * menu_item .climate .conversion
246- )
247- .rename ("marginal_damages" )
248- .to_dataset ()
249- )
250-
251- for var in md .variables :
252- md [var ].encoding .clear ()
253-
254- md .chunk (
255- {
256- "discount_type" : 1 ,
257- "weitzman_parameter" : 14 ,
258- "runid" : 10000 ,
259- "gas" : 1 ,
260- "year" : 10 ,
261- }
262- ).to_zarr (
263- f"{ save_path } /{ menu_option } _{ discount_type } _eta{ menu_item .eta } _rho{ menu_item .rho } _uncollapsed_marginal_damages.zarr" ,
264- consolidated = True ,
265- mode = "w" ,
266- )
267- if factors :
268-
269- f = menu_item .calculate_discount_factors (
270- menu_item .global_consumption_no_pulse / menu_item .pop
271- ).to_dataset (name = "discount_factor" )
272-
273- for var in f .variables :
274- f [var ].encoding .clear ()
191+ if marginal_damages == True :
192+ md = menu_item .uncollapsed_marginal_damages
275193
276- f .chunk (
277- {
278- "discount_type" : 1 ,
279- "weitzman_parameter" : 14 ,
280- "runid" : 10000 ,
281- "gas" : 1 ,
282- "region" : 1 ,
283- "year" : 10 ,
284- }
285- ).to_zarr (
286- f"{ save_path } /{ menu_option } _{ discount_type } _eta{ menu_item .eta } _rho{ menu_item .rho } _uncollapsed_discount_factors.zarr" ,
287- consolidated = True ,
288- mode = "w" ,
289- )
194+ if factors == True :
195+ f = menu_item .uncollapsed_discount_factors
0 commit comments