|
| 1 | +#!/usr/bin/env python3 |
| 2 | +""" |
| 3 | +Simple script to analyze delinquencies data directly from cache. |
| 4 | +""" |
| 5 | + |
| 6 | +import pandas as pd |
| 7 | + |
| 8 | +from src.classes.file_manager import FileManager |
| 9 | + |
| 10 | + |
| 11 | +def analyze_delinquencies(): |
| 12 | + """Load and analyze delinquencies data from cache.""" |
| 13 | + |
| 14 | + print("=" * 80) |
| 15 | + print("DELINQUENCIES DATA ANALYSIS") |
| 16 | + print("=" * 80) |
| 17 | + |
| 18 | + # Load the cached delinquencies data |
| 19 | + file_manager = FileManager() |
| 20 | + |
| 21 | + # Try to load the most recent cache |
| 22 | + try: |
| 23 | + gdf = file_manager.get_most_recent_cache("property_tax_delinquencies") |
| 24 | + if gdf is None: |
| 25 | + print("No cached delinquencies data found!") |
| 26 | + return |
| 27 | + except Exception as e: |
| 28 | + print(f"Error loading cached data: {e}") |
| 29 | + return |
| 30 | + |
| 31 | + print(f"\nTotal records: {len(gdf):,}") |
| 32 | + print(f"Columns: {list(gdf.columns)}") |
| 33 | + |
| 34 | + # Check for the specific columns we care about |
| 35 | + columns_to_check = [ |
| 36 | + "num_years_owed", |
| 37 | + "total_due", |
| 38 | + "total_assessment", |
| 39 | + "is_actionable", |
| 40 | + "sheriff_sale", |
| 41 | + "payment_agreement", |
| 42 | + "most_recent_year_owed", |
| 43 | + ] |
| 44 | + |
| 45 | + print("\nData types:") |
| 46 | + for col in columns_to_check: |
| 47 | + if col in gdf.columns: |
| 48 | + print(f" {col}: {gdf[col].dtype}") |
| 49 | + else: |
| 50 | + print(f" {col}: NOT FOUND") |
| 51 | + |
| 52 | + print("\nColumn coverage:") |
| 53 | + for col in columns_to_check: |
| 54 | + if col in gdf.columns: |
| 55 | + # Check for "NA" strings vs actual nulls |
| 56 | + na_strings = (gdf[col] == "NA").sum() |
| 57 | + actual_nulls = gdf[col].isnull().sum() |
| 58 | + non_null_count = gdf[col].notna().sum() |
| 59 | + coverage_pct = (non_null_count / len(gdf)) * 100 |
| 60 | + |
| 61 | + print( |
| 62 | + f" {col}: {non_null_count:,} ({coverage_pct:.1f}%) - 'NA' strings: {na_strings:,}, actual nulls: {actual_nulls:,}" |
| 63 | + ) |
| 64 | + |
| 65 | + # Show sample values |
| 66 | + print(f" Sample values: {gdf[col].head(5).tolist()}") |
| 67 | + else: |
| 68 | + print(f" {col}: NOT FOUND") |
| 69 | + |
| 70 | + # Analyze numeric columns |
| 71 | + numeric_columns = ["num_years_owed", "total_due", "total_assessment"] |
| 72 | + for col in numeric_columns: |
| 73 | + if col in gdf.columns: |
| 74 | + print(f"\n{col} analysis:") |
| 75 | + |
| 76 | + # Convert "NA" strings to nulls for analysis |
| 77 | + data = gdf[col].replace("NA", pd.NA) |
| 78 | + numeric_data = pd.to_numeric(data, errors="coerce") |
| 79 | + non_null_data = numeric_data.dropna() |
| 80 | + |
| 81 | + if len(non_null_data) > 0: |
| 82 | + stats = non_null_data.describe() |
| 83 | + print(f" Count: {len(non_null_data):,}") |
| 84 | + print(f" Mean: {stats['mean']:.2f}") |
| 85 | + print(f" Std: {stats['std']:.2f}") |
| 86 | + print(f" Min: {stats['min']:.2f}") |
| 87 | + print(f" Max: {stats['max']:.2f}") |
| 88 | + print(f" Q1: {stats['25%']:.2f}") |
| 89 | + print(f" Q3: {stats['75%']:.2f}") |
| 90 | + |
| 91 | + # Show some actual values |
| 92 | + print(f" Sample values: {non_null_data.head(10).tolist()}") |
| 93 | + else: |
| 94 | + print(" No valid numeric data found") |
| 95 | + |
| 96 | + # Analyze boolean columns |
| 97 | + boolean_columns = ["is_actionable", "sheriff_sale", "payment_agreement"] |
| 98 | + for col in boolean_columns: |
| 99 | + if col in gdf.columns: |
| 100 | + print(f"\n{col} analysis:") |
| 101 | + value_counts = gdf[col].value_counts() |
| 102 | + for value, count in value_counts.items(): |
| 103 | + pct = (count / len(gdf)) * 100 |
| 104 | + print(f" {value}: {count:,} ({pct:.1f}%)") |
| 105 | + |
| 106 | + # Show sample values |
| 107 | + print(f" Sample values: {gdf[col].head(10).tolist()}") |
| 108 | + |
| 109 | + print("\n" + "=" * 80) |
| 110 | + |
| 111 | + |
| 112 | +if __name__ == "__main__": |
| 113 | + analyze_delinquencies() |
0 commit comments