@@ -71,22 +71,23 @@ def __clean_csv_headers(header):
71
71
}
72
72
73
73
74
- def volgistics_address (index , street ):
74
+ def volgistics_address (street , index ):
75
75
result = ""
76
76
77
- for item in street :
78
- if isinstance (item , str ):
79
- if " " in item :
80
- result = item .split ()[index ]
77
+ if isinstance (street , str ):
78
+ if " " in street :
79
+ result = street .split ()[index ]
81
80
82
81
return result
83
82
83
+
84
84
def normalize_phone_number (number ):
85
85
if str (number ) == 'nan' :
86
86
return ""
87
87
parsed_number = phonenumbers .parse (number , "US" )
88
88
return phonenumbers .format_number (parsed_number , phonenumbers .PhoneNumberFormat .NATIONAL )
89
89
90
+
90
91
SOURCE_NORMALIZATION_MAPPING = {
91
92
"salesforcecontacts" : {
92
93
"source_id" : "contact_id" ,
@@ -131,8 +132,8 @@ def normalize_phone_number(number):
131
132
"last_name" : "last_name" ,
132
133
"email" : "email" ,
133
134
"mobile" : lambda df : df ["cell" ].combine_first (df ["home" ]).apply (normalize_phone_number ),
134
- "street_and_number" : lambda df : volgistics_address ( 1 , df ["street_1" ]),
135
- "apartment" : lambda df : volgistics_address ( 0 , df ["street_1" ]),
135
+ "street_and_number" : lambda df : df ["street_1" ]. apply ( volgistics_address , index = 1 ),
136
+ "apartment" : lambda df : df ["street_1" ]. apply ( volgistics_address , index = 0 ),
136
137
"city" : "city" ,
137
138
"state" : "state" ,
138
139
"zip" : "zip" ,
0 commit comments