@@ -70,7 +70,7 @@ def compute_fitness(genome, net, episodes, min_reward, max_reward):
7070 return reward_error
7171
7272
73- class PooledErrorCompute ( object ) :
73+ class PooledErrorCompute :
7474 def __init__ (self , num_workers ):
7575 self .num_workers = num_workers
7676 self .test_episodes = []
@@ -110,7 +110,7 @@ def simulate(self, nets):
110110
111111 self .test_episodes .append ((score , data ))
112112
113- print ("Score range [{:.3f}, {:.3f}]" . format ( min ( scores ), max ( scores )) )
113+ print (f "Score range [{ min ( scores ) :.3f} , { max ( scores ) :.3f} ]" )
114114
115115 def evaluate_genomes (self , genomes , config ):
116116 self .generation += 1
@@ -120,19 +120,19 @@ def evaluate_genomes(self, genomes, config):
120120 for gid , g in genomes :
121121 nets .append ((g , neat .nn .FeedForwardNetwork .create (g , config )))
122122
123- print ("network creation time {0}" . format ( time .time () - t0 ) )
123+ print (f "network creation time { time .time () - t0 } " )
124124 t0 = time .time ()
125125
126126 # Periodically generate a new set of episodes for comparison.
127127 if 1 == self .generation % 10 :
128128 self .test_episodes = self .test_episodes [- 300 :]
129129 self .simulate (nets )
130- print ("simulation run time {0}" . format ( time .time () - t0 ) )
130+ print (f "simulation run time { time .time () - t0 } " )
131131 t0 = time .time ()
132132
133133 # Assign a composite fitness to each genome; genomes can make progress either
134134 # by improving their total reward or by making more accurate reward estimates.
135- print ("Evaluating {0} test episodes" . format ( len (self .test_episodes )) )
135+ print (f "Evaluating { len (self .test_episodes )} test episodes" )
136136 if self .num_workers < 2 :
137137 for genome , net in nets :
138138 reward_error = compute_fitness (genome , net , self .test_episodes , self .min_reward , self .max_reward )
@@ -149,7 +149,7 @@ def evaluate_genomes(self, genomes, config):
149149 reward_error = job .get (timeout = None )
150150 genome .fitness = - np .sum (reward_error ) / len (self .test_episodes )
151151
152- print ("final fitness compute time {0} \n " . format ( time .time () - t0 ) )
152+ print (f "final fitness compute time { time .time () - t0 } \n " )
153153
154154
155155def run ():
@@ -187,10 +187,10 @@ def run():
187187 plt .close ()
188188
189189 mfs = sum (stats .get_fitness_mean ()[- 5 :]) / 5.0
190- print ("Average mean fitness over last 5 generations: {0}" . format ( mfs ) )
190+ print (f "Average mean fitness over last 5 generations: { mfs } " )
191191
192192 mfs = sum (stats .get_fitness_stat (min )[- 5 :]) / 5.0
193- print ("Average min fitness over last 5 generations: {0}" . format ( mfs ) )
193+ print (f "Average min fitness over last 5 generations: { mfs } " )
194194
195195 # Use the best genomes seen so far as an ensemble-ish control system.
196196 best_genomes = stats .best_unique_genomes (3 )
@@ -245,7 +245,7 @@ def run():
245245 # Save the winners.
246246 if best_genomes :
247247 for n , g in enumerate (best_genomes ):
248- name = 'winner-{0}' . format ( n )
248+ name = f 'winner-{ n } '
249249 with open (name + '.pickle' , 'wb' ) as f :
250250 pickle .dump (g , f )
251251
0 commit comments