Skip to content

Commit 23d0583

Browse files
[Term Entry] Python - Pandas groupBy: size()
* [Edit] Python: Python CLI arguments * Update command-line-arguments.md * [Term Entry] PyTorch Tensor Operations: .log2() * [Term Entry] Python - Pandas groupBy: size() * Delete docs/content/pytorch/concepts/tensor-operations/terms/log2/log2.md * Update size.md ---------
1 parent 312c7a1 commit 23d0583

File tree

1 file changed

+116
-0
lines changed
  • content/pandas/concepts/groupby/terms/size

1 file changed

+116
-0
lines changed
Lines changed: 116 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,116 @@
1+
---
2+
Title: 'size()'
3+
Description: 'Returns a Series containing the size (row count) of each group.'
4+
Subjects:
5+
- 'Computer Science'
6+
- 'Data Science'
7+
Tags:
8+
- 'Data Structures'
9+
- 'Pandas'
10+
CatalogContent:
11+
- 'learn-python-3'
12+
- 'paths/data-science'
13+
---
14+
15+
The **`size()`** method in pandas returns the number of rows or elements in each group created by the `groupby()` [function](https://www.codecademy.com/resources/docs/pandas/built-in-functions). It provides a quick way to determine group sizes without applying an aggregation function.
16+
17+
## Syntax
18+
19+
```pseudo
20+
DataFrameGroupBy.size()
21+
```
22+
23+
**Parameters:**
24+
25+
The `size()` method doesn't take any parameters.
26+
27+
**Return value:**
28+
29+
The `size()` method returns a Series containing the size (row count) of each group created by `groupby()`.
30+
31+
## Example 1: Counting Rows by Group
32+
33+
In this example, a [DataFrame](https://www.codecademy.com/resources/docs/pandas/dataframe) of employees is grouped by their department, and `size()` counts how many employees belong to each department:
34+
35+
```py
36+
import pandas as pd
37+
38+
data = {
39+
'Department': ['HR', 'IT', 'HR', 'Finance', 'IT', 'Finance'],
40+
'Employee': ['John', 'Sara', 'Mike', 'Anna', 'Tom', 'Chris']
41+
}
42+
df = pd.DataFrame(data)
43+
44+
group_sizes = df.groupby('Department').size()
45+
print(group_sizes)
46+
```
47+
48+
The output of this code is:
49+
50+
```shell
51+
Department
52+
Finance 2
53+
HR 2
54+
IT 2
55+
dtype: int64
56+
```
57+
58+
## Example 2: Using Multiple Grouping Columns
59+
60+
In this example, `size()` counts the number of members in each combination of team and shift within a dataset:
61+
62+
```py
63+
import pandas as pd
64+
65+
data = {
66+
'Team': ['A', 'A', 'B', 'B', 'B', 'C'],
67+
'Shift': ['Day', 'Night', 'Day', 'Night', 'Day', 'Day'],
68+
'Name': ['John', 'Sara', 'Mike', 'Anna', 'Tom', 'Chris']
69+
}
70+
df = pd.DataFrame(data)
71+
72+
group_sizes = df.groupby(['Team', 'Shift']).size()
73+
print(group_sizes)
74+
```
75+
76+
The output of this code is:
77+
78+
```shell
79+
Team Shift
80+
A Day 1
81+
Night 1
82+
B Day 2
83+
Night 1
84+
C Day 1
85+
dtype: int64
86+
```
87+
88+
## Codebyte Example: Counting Transactions Per Product
89+
90+
In this example, `size()` is used to count how many sales transactions occurred for each product in a store dataset:
91+
92+
```codebyte/python
93+
import pandas as pd
94+
95+
sales = pd.DataFrame({
96+
'Product': ['Apple', 'Banana', 'Apple', 'Orange', 'Banana', 'Banana', 'Apple'],
97+
'Customer': ['A', 'B', 'C', 'A', 'D', 'E', 'F']
98+
})
99+
100+
counts = sales.groupby('Product').size()
101+
print(counts)
102+
```
103+
104+
## Frequently Asked Questions
105+
106+
### 1. What is the pandas `groupby().size()` method?
107+
108+
`groupby().size()` returns the number of rows in each group created by `groupby()`.
109+
110+
### 2. What is the purpose of `groupby()` in pandas?
111+
112+
`groupby()` splits data into groups based on selected column values to enable aggregation and summarization.
113+
114+
### 3. What does `NaN` stand for in pandas?
115+
116+
`NaN` stands for Not a Number and indicates missing or undefined data.

0 commit comments

Comments
 (0)