Skip to content

Commit 63b8bf4

Browse files
[Term Entry] PyTorch Tensor Operations: .log2()
* [Edit] Python: Python CLI arguments * Update command-line-arguments.md * [Term Entry] PyTorch Tensor Operations: .log2() * [Term Entry] PyTorch Tensor Operations: .log2() * Delete docs/content/pytorch/concepts/tensor-operations/terms/log2/log2.md * Update log2.md ---------
1 parent 123a5ee commit 63b8bf4

File tree

1 file changed

+78
-0
lines changed
  • content/pytorch/concepts/tensor-operations/terms/log2

1 file changed

+78
-0
lines changed
Lines changed: 78 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,78 @@
1+
---
2+
Title: '.log2()'
3+
Description: 'Computes the base-2 logarithm of each element in the input tensor and returns a new tensor with the results.'
4+
Subjects:
5+
- 'Code Foundations'
6+
- 'Computer Science'
7+
Tags:
8+
- 'Elements'
9+
- 'Methods'
10+
- 'PyTorch'
11+
- 'Tensors'
12+
CatalogContent:
13+
- 'learn-python-3'
14+
- 'paths/data-science'
15+
---
16+
17+
The **`.log2()`** method in PyTorch returns a new [tensor](https://www.codecademy.com/resources/docs/pytorch/tensors) by computing the logarithm base 2 of each element in the input tensor. This operation is useful in numerous data-science and machine-learning workflows where values are interpreted on a log scale (e.g., information theory, binary magnitude comparisons).
18+
19+
## Syntax
20+
21+
```pseudo
22+
torch.log2(input, *, out=None) → Tensor
23+
```
24+
25+
**Parameters:**
26+
27+
- `input` (Tensor): The tensor whose elements are to be transformed by base-2 logarithm.
28+
- `out` (Tensor, optional): A tensor to store the output; must have the same shape as input if provided.
29+
30+
**Return value:**
31+
32+
Returns a new tensor of the same shape as `input` where each element is `log₂(input[i])`.
33+
34+
## Example 1: Basic Usage of `.log2()`
35+
36+
In this example, the base-2 logarithm is computed for a tensor containing powers of 2:
37+
38+
```py
39+
import torch
40+
41+
# Define a tensor
42+
input_tensor = torch.tensor([2.0, 4.0, 8.0, 16.0, 32.0])
43+
44+
# Compute base-2 logarithm
45+
output_tensor = torch.log2(input_tensor)
46+
47+
print(output_tensor)
48+
```
49+
50+
The output of this code is:
51+
52+
```shell
53+
tensor([1., 2., 3., 4., 5.])
54+
```
55+
56+
## Example 2: Applying `.log2()` on Random Values
57+
58+
In this example, a tensor with random positive values is transformed using base-2 logarithm to analyze data on a log scale:
59+
60+
```py
61+
import torch
62+
63+
# Generate a tensor of random positive values
64+
data = torch.rand(5) * 10 + 1
65+
66+
# Apply log2 transformation
67+
log_tensor = torch.log2(data)
68+
69+
print(data)
70+
print(log_tensor)
71+
```
72+
73+
The output of this code is:
74+
75+
```shell
76+
tensor([10.5500, 9.2777, 10.9371, 1.3551, 5.2609])
77+
tensor([3.3992, 3.2138, 3.4512, 0.4384, 2.3953])
78+
```

0 commit comments

Comments
 (0)